Noncommutative Rings (MATH445) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Noncommutative Rings MATH445 3 0 0 0 0
Pre-requisite Course(s)
N/A
Course Language English
Course Type N/A
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery
Learning and Teaching Strategies .
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives
Course Learning Outcomes The students who succeeded in this course;
Course Content Noetherian Rings, The Hilbert's Basis Theorem, Artinian Rings, The Jacobson Radical of a ring, The Hopkins-Levitzki Theorem, Semisimple Rings, The Wedderburn-Artin Theorem, The Goldie's Theorems, Krull Dimension

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation

Sources

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury - -
Final Exam/Final Jury - -
Toplam 0 0
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Has the ability to apply scientific knowledge gained in the undergraduate education and to expand and extend knowledge in the same or in a different area
2 Can apply gained knowledge and problem solving abilities in inter-disciplinary research
3 Has the ability to work independently within research area, to state the problem, to develop solution techniques, to solve the problem, to evaluate the obtained results and to apply them when necessary
4 Takes responsibility individually and as a team member to improve systematic approaches to produce solutions in unexpected complicated situations related to the area of study
5 Can develop strategies, implement plans and principles on the area of study and can evaluate obtained results within the framework
6 Can develop and extend the knowledge in the area and to use them with scientific, social and ethical responsibility
7 Has the ability to follow recent developments within the area of research, to support research with scientific arguments and data, to communicate the information on the area of expertise in a systematically by means of written report and oral/visual presentation
8 To have an oral and written communication ability in at least one of the common foreign languages ("European Language Portfolio Global Scale", Level B2)
9 Has software and hardware knowledge in the area of expertise, and has proficient information and communication technology knowledge
10 Follows scientific, cultural, and ethical criteria in collecting, interpreting and announcing data in the research area and has the ability to teach.
11 Has professional ethical consciousness and responsibility which takes into account the universal and social dimensions in the process of data collection, interpretation, implementation and declaration of results in mathematics and its applications.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours)
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class
Presentation/Seminar Prepration
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury
Prepration of Final Exams/Final Jury
Total Workload 0