ECTS - Computer Aided Solid Modeling

Computer Aided Solid Modeling (MFGE108) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Computer Aided Solid Modeling MFGE108 1 3 0 2 4
Pre-requisite Course(s)
N/A
Course Language English
Course Type N/A
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Drill and Practice.
Course Coordinator
Course Lecturer(s)
  • Instructor Candaş Urunga
Course Assistants
Course Objectives
Course Learning Outcomes The students who succeeded in this course;
  • Ability to use and understand principles of engineering drawing for working drawings for production and descriptive geometry using “Computer Aided Design”.
  • Ability to use and understand computer aided solid modeling and assembly modeling, dimensioning principles.
  • Ability to prepare solid model and assembly drawings.
  • Ability to understand technical drawings of assembly and machine elements.
  • Ability to understand descriptive geometry.
Course Content Part design and principles of surface design, drafting of part design, fundamental concepts of dimensioning and tolerances, fundamentals of assembly design and bill of materials.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction Lecture Notes 1 on moodle website
2 Sketching Lecture Notes 2 on moodle website
3 Sketching Lecture Notes 3 on moodle website
4 Sketching Lecture Notes 4 on moodle website
5 Sketching Lecture Notes 5 on moodle website
6 Solid Modelling Lecture Notes 6 on moodle website
7 Solid Modelling Lecture Notes 7 on moodle website
8 Solid Modelling Lecture Notes 8 on moodle website
9 Solid Modelling Lecture Notes 9 on moodle website
10 Assembly Lecture Notes 10 on moodle website
11 Assembly Lecture Notes 11 on moodle website
12 Assembly Lecture Notes 12 on moodle website
13 Drafting Lecture Notes 13 on moodle website
14 Drafting Lecture Notes 14 on moodle website
15 Final Exam Lecture Notes on moodle website
16 Final Exam Lecture Notes on moodle website

Sources

Course Book 1. Lecture hand-outs
Other Sources 2. Introduction to Engineering Drawing: The Foundations of Engineering Design and Computer Aided Drafting, W.J. Luzadder, J.M. Duff
3. Drafting & Design, C.E. Kicklighter, W.C. Brown

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application 2 15
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 50
Final Exam/Final Jury 1 35
Toplam 5 100
Percentage of Semester Work 65
Percentage of Final Work 35
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 An ability to apply knowledge in mathematics and basic sciences and computational skills to solve manufacturing engineering problems X
2 An ability to define and analyze issues related with manufacturing technologies X
3 An ability to develop a solution based approach and a model for an engineering problem and design and manage an experiment X
4 An ability to design a comprehensive manufacturing system based on creative utilization of fundamental engineering principles while fulfilling sustainability in environment and manufacturability and economic constraints X
5 An ability to chose and use modern technologies and engineering tools for manufacturing engineering applications X
6 An ability to utilize information technologies efficiently to acquire datum and analyze critically, articulate the outcome and make decision accordingly X
7 An ability to attain self-confidence and necessary organizational work skills to participate in multi-diciplinary and interdiciplinary teams as well as act individually X
8 An ability to attain efficient communication skills in Turkish and English both verbally and orally X
9 An ability to reach knowledge and to attain life-long learning and self-improvement skills, to follow recent advances in science and technology X
10 An awareness and responsibility about professional, legal, ethical and social issues in manufacturing engineering X
11 An awareness about solution focused project and risk management, enterpreneurship, innovative and sustainable development X
12 An understanding on the effects of engineering applications on health, social and legal aspects at universal and local level during decision making process X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours)
Laboratory
Application 16 3 48
Special Course Internship
Field Work
Study Hours Out of Class 16 1 16
Presentation/Seminar Prepration
Project
Report
Homework Assignments 2 2 4
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 6 12
Prepration of Final Exams/Final Jury 1 8 8
Total Workload 88