Watercolour Painting (ART251) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Watercolour Painting ART251 Fall and Spring 3 0 0 3 4
Pre-requisite Course(s)
None
Course Language Turkish
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Drill and Practice.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives Basic information on watercolour art and its historical background. Information on the technique, media and materials of the watercolour. Application of watercolour painting techniques at basic level.
Course Learning Outcomes The students who succeeded in this course;
  • Definition of watercolour media and materials.
  • Historical progress of the art of watercolour painting.
  • Application of watercolour techniques at basic level.
  • Visiting art exhibitions.
Course Content Basic knowledge of watercolour painting art and its history; watercolour techniques, tools and materials; demonstration of some real watercolour painting samples; basic principles and practice of painting techniques.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction, definition of watercolour painting media and materials
2 Basic art concepts, painting art and its relation with other art branches
3 Watercolour painting techniques, demonstration of main principles with examples
4 Applied watercolour painting techniques (Demonstration of ten separate techniques)
5 Watercolour painting studies in relation with colors (Theoretical and basic colour knowledge, researches on main and complementary colours besides contrasting colours and use of colours in compositions)
6 Demonstration of light and shadow besides introducing main principles (To paint a spherical form with wet on wet technique by saving white of the paper to make study on light and shadow practices. Application of the similar practice on an object. To make practices with layer by layer painting system and practice light and shadow)
7 Midterm
8 Still life study with wet on wet technique and with dry brush painting system (Dry brush technique, background painting and composition studies, Presentation of selected examples in relation with the relevant topics)
9 Information on perspective and application on a landscape painting - I (Air perspective application)
10 Information on perspective and application on a landscape painting - II (Line perspective application)
11 Special watercolour techniques and application of snow painting on a landscape by saving white of the paper
12 Applied special techniques in watercolour painting (Sunset in a landscape)
13 Designing postcards with the learned techniques
14 Watercolour historical background in brief
15 Discussions on term assignments
16 Final assessment

Sources

Other Sources 1. Çağlarca, S. (1985). Suluboya Resim Tekniği. İstanbul: İnkılap Kitabevi.
2. Eyüboğlu, B. R. (1977). Resme Başlarken. İstanbul: Cem Yayınevi.
3. İslimyeli, N. (2005). Suluboya Resim Sanatı Tarihi. Ankara: Kültür ve Turizm Bakanlığı.
4. Özkan, K. (2001). Su Resimleri - Süleyman Seyyid’den Günümüze Türk Resminde Suluboya. İstanbul: Yapı Kredi Yayınları.
5. Paige, L. L. (2005). Watercolour Techniques. London: Apple Press.
6. Parramon, J. M., & Fresquet, G. (2004). Suluboya Resim Sanatı. İstanbul: Remzi Kitabevi.
7. Çeşitli uluslar arası müzelerden ve internetten derlenmiş slaytlar

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 15 10
Laboratory - -
Application 10 10
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation 3 30
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 20
Final Exam/Final Jury 1 30
Toplam 30 100
Percentage of Semester Work 70
Percentage of Final Work 30
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge of mathematics, physical sciences and the subjects specific to engineering disciplines; the ability to apply theoretical and practical knowledge of these areas in the solution of complex engineering problems.
2 The ability to define, formulate, and solve complex engineering problems; the ability to select and apply proper analysis and modeling methods for this purpose.
3 The ability to design a complex system, process, device or product under realistic constraints and conditions in such a way as to meet the specific requirements; the ability to apply modern design methods for this purpose.
4 The ability to select, and use modern techniques and tools needed to analyze and solve complex problems encountered in engineering practices; the ability to use information technologies effectively.
5 The ability to design experiments, conduct experiments, gather data, and analyze and interpret results for investigating complex engineering problems or research areas specific to engineering disciplines.
6 The ability to work efficiently in inter-, intra-, and multi-disciplinary teams; the ability to work individually.
7 (a) Sözlü ve yazılı etkin iletişim kurma becerisi; etkin rapor yazma ve yazılı raporları anlama, tasarım ve üretim raporları hazırlayabilme, etkin sunum yapabilme, açık ve anlaşılır talimat verme ve alma becerisi. (b) En az bir yabancı dil bilgisi; bu yabancı dilde etkin rapor yazma ve yazılı raporları anlama, tasarım ve üretim raporları hazırlayabilme, etkin sunum yapabilme, açık ve anlaşılır talimat verme ve alma becerisi.
8 Recognition of the need for lifelong learning; the ability to access information, follow developments in science and technology, and adapt and excel oneself continuously.
9 Acting in conformity with the ethical principles; professional and ethical responsibility and knowledge of the standards employed in engineering applications.
10 Knowledge of business practices such as project management, risk management, and change management; awareness of entrepreneurship and innovation; knowledge of sustainable development.
11 Knowledge of the global and social effects of engineering practices on health, environment, and safety issues, and knowledge of the contemporary issues in engineering areas; awareness of the possible legal consequences of engineering practices.
12 (a) Knowledge of (i) fluid mechanics, (ii) heat transfer, (iii) manufacturing process, (iv) electronics and control, (v) vehicle components design, (vi) vehicle dynamics, (vii) vehicle propulsion/drive and power systems, (viii) technical laws and regulations in automotive engineering field, and (ix) vehicle verification tests. (b) The ability to merge and apply these knowledge in solving multi-disciplinary automotive problems.
13 The ability to make use of theoretical, experimental, and simulation methods, and computer aided design techniques in automotive engineering field.
14 The ability to work in the field of vehicle design and manufacturing.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application 10 2 20
Special Course Internship
Field Work
Study Hours Out of Class 3 4 12
Presentation/Seminar Prepration 3 4 12
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 4 4
Prepration of Final Exams/Final Jury 1 4 4
Total Workload 100