Cartoon (ART202) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Cartoon ART202 Fall and Spring 3 0 0 3 4
Pre-requisite Course(s)
None
Course Language Turkish
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Drill and Practice.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives - Students are able to perceive the art of cartoons formally and narratively and comprehend the idea of cartoon jokes. - To teach simple expression and drawing styles in the direction of the principles of cartoon.
Course Learning Outcomes The students who succeeded in this course;
  • Learning the definition and purposes of cartoons.
  • Learning to be able to criticize of daily life and its outcomes.
  • Learning tools of design and drawing of cartoon.
  • Learning to draw cartoon.
Course Content Basic information on cartoon; drawing techniques using simple rules; humor; career-oriented cartoon work.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction, briefing about the course content.
2 Definition of cartoon. Definition of caricature. Introducing the course equipment. Knowledge of course equipment and resources.
3 A brief history of international cartoon with examples. Analyzing the well- known cartoon artists, their style and successful cartoon examples.
4 A brief history of Turkish cartoon with examples.
5 Presentation of cartoon history and famous artists. Drawing styles of cartoon artists.
6 Drawing cartoon about defined subjects. Discuss the drawings.
7 Midterm Revision of students’ works.
8 Explanation of types of cartoon art (political issues, fun, global issues etc.), choosing one of these types by students.
9 Humoristic approach and thinking. Expression the ideas with simple lines.
10 Finding spots about the selected types of cartoon. Methods of the finding ideas.
11 Finding spots about the selected types of cartoon. Identifying the humorous cartoon. Expression the finding ideas with simple lines.
12 Reconsidering the finding humors, practicing cartoon sketches.
13 Reconsidering the design of the cartoon sketches. Discuss about the sketches.
14 Completing the previous sketches.
15 Preparation of the exhibition of cartoon works and opening the exhibition.
16 Final assessment

Sources

Other Sources 1. Balcıoğlu, S. (1974). 50 Yılın Türk Karikatürü. İş Bankası.
2. Çeviker, T. (1998). Gelişim Sürecinde Türk Karikatürü. Adam Yayınları.
3. Topuz, H. (2017). Başlangıçtan Bugüne Dünya Karikatürü. İnkılap Kitabevi.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 15 10
Laboratory - -
Application 8 30
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 2 20
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 20
Final Exam/Final Jury 1 20
Toplam 27 100
Percentage of Semester Work 80
Percentage of Final Work 20
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge of mathematics, physical sciences and the subjects specific to engineering disciplines; the ability to apply theoretical and practical knowledge of these areas in the solution of complex engineering problems.
2 The ability to define, formulate, and solve complex engineering problems; the ability to select and apply proper analysis and modeling methods for this purpose.
3 The ability to design a complex system, process, device or product under realistic constraints and conditions in such a way as to meet the specific requirements; the ability to apply modern design methods for this purpose.
4 The ability to select, and use modern techniques and tools needed to analyze and solve complex problems encountered in engineering practices; the ability to use information technologies effectively.
5 The ability to design experiments, conduct experiments, gather data, and analyze and interpret results for investigating complex engineering problems or research areas specific to engineering disciplines.
6 The ability to work efficiently in inter-, intra-, and multi-disciplinary teams; the ability to work individually.
7 (a) Sözlü ve yazılı etkin iletişim kurma becerisi; etkin rapor yazma ve yazılı raporları anlama, tasarım ve üretim raporları hazırlayabilme, etkin sunum yapabilme, açık ve anlaşılır talimat verme ve alma becerisi. (b) En az bir yabancı dil bilgisi; bu yabancı dilde etkin rapor yazma ve yazılı raporları anlama, tasarım ve üretim raporları hazırlayabilme, etkin sunum yapabilme, açık ve anlaşılır talimat verme ve alma becerisi.
8 Recognition of the need for lifelong learning; the ability to access information, follow developments in science and technology, and adapt and excel oneself continuously.
9 Acting in conformity with the ethical principles; professional and ethical responsibility and knowledge of the standards employed in engineering applications.
10 Knowledge of business practices such as project management, risk management, and change management; awareness of entrepreneurship and innovation; knowledge of sustainable development.
11 Knowledge of the global and social effects of engineering practices on health, environment, and safety issues, and knowledge of the contemporary issues in engineering areas; awareness of the possible legal consequences of engineering practices.
12 (a) Knowledge of (i) fluid mechanics, (ii) heat transfer, (iii) manufacturing process, (iv) electronics and control, (v) vehicle components design, (vi) vehicle dynamics, (vii) vehicle propulsion/drive and power systems, (viii) technical laws and regulations in automotive engineering field, and (ix) vehicle verification tests. (b) The ability to merge and apply these knowledge in solving multi-disciplinary automotive problems.
13 The ability to make use of theoretical, experimental, and simulation methods, and computer aided design techniques in automotive engineering field.
14 The ability to work in the field of vehicle design and manufacturing.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application 10 3 30
Special Course Internship
Field Work
Study Hours Out of Class 2 3 6
Presentation/Seminar Prepration
Project
Report
Homework Assignments 2 3 6
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 5 5
Prepration of Final Exams/Final Jury 1 5 5
Total Workload 100