ECTS - Introduction to Classical Guitar

Introduction to Classical Guitar (ART225) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Introduction to Classical Guitar ART225 Fall and Spring 3 0 0 3 4
Pre-requisite Course(s)
Classical guitar needed
Course Language Turkish
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Drill and Practice.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives Knowledge on the field music and guitar. Learning to play guitar.
Course Learning Outcomes The students who succeeded in this course;
  • Knowledge of the musical terminology
  • Learning the notes on the guitar
  • Knowledge on rhythm and reading rhythm
  • Learning popular songs on guitar
  • Entrance to harmony and theory of music
Course Content Fundamentals of music; notes, rhythm and fundamental music vocabulary; notes on the guitar, diagrams.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introducing the course and explaining the contents
2 The history of guitar Supply of equipment (guitar, pick and music book), reading sources.
3 Basic concepts Note studies on the stave. Tablature system and study of diagrams
4 Tuning the guitar and playing positions Guitar exercises: grip, right-left hand exercises
5 Bona and notes on guitar. Notes on the first three strings (E-B-G strings). Guitar exercises: Notes on the first three strings (E-B-G strings).
6 Bona and notes on guitar. Notes on the other three strings (D-A-E strings). Guitar exercises: Notes on the other three strings (D-A-E strings).
7 Midterm
8 Chords I - learning to read diagrams Introduction to the modal system
9 Chords II - learning the first song Modal system studies
10 Right hand ryhthm workout Coordination on guitar
11 Working on songs I Studies on playing popular songs 1
12 Working on songs II Studies on playing popular songs 2
13 Working on songs III Studies on playing popular songs 3
14 Working on songs IV Studies on playing popular songs 4
15 Working on songs V Studies on playing popular songs 5
16 Final Assessment

Sources

Other Sources 1. Chapman, R. (1999). Bütün Yönleriyle Gitarlar. İstanbul: Dost Kitabevi.
2. Çokuslu, S. (2011). Temel Gitar Eğitimi. İstanbul: Portemem Yayınları.
3. İşbilen, B. (2012). Pop Gitar Metodu. Ankara: İşbilen Yayınları.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 15 10
Laboratory - -
Application 12 40
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 20
Final Exam/Final Jury 1 30
Toplam 29 100
Percentage of Semester Work 70
Percentage of Final Work 30
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge of mathematics, physical sciences and the subjects specific to engineering disciplines; the ability to apply theoretical and practical knowledge of these areas in the solution of complex engineering problems.
2 The ability to define, formulate, and solve complex engineering problems; the ability to select and apply proper analysis and modeling methods for this purpose.
3 The ability to design a complex system, process, device or product under realistic constraints and conditions in such a way as to meet the specific requirements; the ability to apply modern design methods for this purpose.
4 The ability to select, and use modern techniques and tools needed to analyze and solve complex problems encountered in engineering practices; the ability to use information technologies effectively.
5 The ability to design experiments, conduct experiments, gather data, and analyze and interpret results for investigating complex engineering problems or research areas specific to engineering disciplines.
6 The ability to work efficiently in inter-, intra-, and multi-disciplinary teams; the ability to work individually.
7 (a) Sözlü ve yazılı etkin iletişim kurma becerisi; etkin rapor yazma ve yazılı raporları anlama, tasarım ve üretim raporları hazırlayabilme, etkin sunum yapabilme, açık ve anlaşılır talimat verme ve alma becerisi. (b) En az bir yabancı dil bilgisi; bu yabancı dilde etkin rapor yazma ve yazılı raporları anlama, tasarım ve üretim raporları hazırlayabilme, etkin sunum yapabilme, açık ve anlaşılır talimat verme ve alma becerisi.
8 Recognition of the need for lifelong learning; the ability to access information, follow developments in science and technology, and adapt and excel oneself continuously.
9 Acting in conformity with the ethical principles; professional and ethical responsibility and knowledge of the standards employed in engineering applications.
10 Knowledge of business practices such as project management, risk management, and change management; awareness of entrepreneurship and innovation; knowledge of sustainable development.
11 Knowledge of the global and social effects of engineering practices on health, environment, and safety issues, and knowledge of the contemporary issues in engineering areas; awareness of the possible legal consequences of engineering practices.
12 (a) Knowledge of (i) fluid mechanics, (ii) heat transfer, (iii) manufacturing process, (iv) electronics and control, (v) vehicle components design, (vi) vehicle dynamics, (vii) vehicle propulsion/drive and power systems, (viii) technical laws and regulations in automotive engineering field, and (ix) vehicle verification tests. (b) The ability to merge and apply these knowledge in solving multi-disciplinary automotive problems.
13 The ability to make use of theoretical, experimental, and simulation methods, and computer aided design techniques in automotive engineering field.
14 The ability to work in the field of vehicle design and manufacturing.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application 12 2 24
Special Course Internship
Field Work
Study Hours Out of Class 10 2 20
Presentation/Seminar Prepration
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 4 4
Prepration of Final Exams/Final Jury 1 4 4
Total Workload 100