ECTS - Advanced Heat and Mass Transfer

Advanced Heat and Mass Transfer (CEAC509) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Advanced Heat and Mass Transfer CEAC509 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type N/A
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Question and Answer, Drill and Practice, Problem Solving.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The course aims to cover the concept of energy balances and the three modes of heat transfer - conduction, convection, and radiation in advanced level.
Course Learning Outcomes The students who succeeded in this course;
  • Explain the concept of energy balances and the three modes of heat transfer - conduction, convection, and radiation.
  • Determine steady state and transient temperature distribution in various solid geometries of practical importance.
  • Select and apply the appropriate correlation for different heat and mass convection processes.
  • Analyze mass diffusion in a stationary medium and low rate mass convection based on the analogy between heat and mass transfer.
  • Determine appropriate transport phenomena for any process or system involving mass transfer.
Course Content Principles and analogies of molecular heat and mass transport, convective heat and mass transport, interfacial heat and mass transfer,basic vectorial equation for mass transfer with chemical reaction, analytical and numerical solution of one dimensional transient transport equations, gas absorption with chemical reaction.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Principles of molecular heat and mass transfer
2 Analogy of heat and mass tranfer
3 Convective heat and mass transfer
4 Convective heat and mass transfer
5 Interfacial mass transfer
6 Midterm I
7 Interfacial mass transfer
8 Mass transfer with chemical reaction
9 Mass transfer with chemical reaction
10 One dimensional unsteady state transport equations
11 One dimensional unsteady state transport equation
12 Gas absorption with chemical reaction
13 Gas absorption with chemical reaction
14 Review
15 Review
16 Final exam

Sources

Course Book 1. C.J.Geankoplis, Transport Processes & Separation Processes Principles, Int. Ed., Pearson, 2014
2. F.P. Incorpera, D.P. Dewitt, T.L.Bergman,A.S.Levine, Principles of Heat and Mass Transfer, 7th Ed., Wiley, 2013

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 60
Final Exam/Final Jury 1 40
Toplam 3 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 An ability to apply knowledge of mathematics, science, and engineering to solve chemical engineering and applied chemistry problems.
2 An ability to analyze and model a domain specific problem, identify and define the appropriate requirements for its solution.
3 An ability to design, implement and evaluate a chemical engineering system or a system component to meet specified requirements.
4 An ability to use the modern techniques and engineering tools necessary for chemical engineering practices.
5 An ability to acquire, analyze and interpret data to understand chemical engineering and applied chemistry requirements.
6 The ability to demonstrate the necessary organizational and business skills to work effectively in inter/inner disciplinary teams or individually.
7 An ability to communicate effectively in Turkish and English.
8 Recognition of the need for, and the ability to access information, to follow recent developments in science and technology and to engage in life-long learning.
9 An understanding of professional, legal, ethical and social issues and responsibilities in chemical engineering and applied chemistry.
10 Skills in project and risk management, awareness about importance of entrepreneurship, innovation and long-term development, and recognition of international standards and methodologies.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 1 16
Presentation/Seminar Prepration
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 20 40
Prepration of Final Exams/Final Jury 1 20 20
Total Workload 124