ECTS - Interior Design of Sculpture

Interior Design of Sculpture (ART264) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Interior Design of Sculpture ART264 Fall and Spring 3 0 0 3 4
Pre-requisite Course(s)
N/A
Course Language Turkish
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Discussion, Drill and Practice.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The aim Interior Design of Sculpture course is; to research and plan project steps, prepare project parts, to write and to present, strengthen aesthetic appeal.
Course Learning Outcomes The students who succeeded in this course;
  •  Relations of sculpture and three dimensional design in interior space.
  •  Modeling and sketching
  •  Application of three-dimensional original designs.
Course Content Shape elements, point-line-surface relation, drawing techniques, form-shape, measure-ratio, light-dark, shadow-light, volume information, texture types and touch.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Teaching theoretical knowledge
2 Research and discussion on field examples
3 Gaining the competencies to draw designs
4 Project topic research Pre study for project
5 Planning project steps
6 Planning project steps
7 Designing interior applications
8 Midterm Assessment
9 Prepare project sections
10 Prepare project sections
11 By giving three-dimensional form; Preparing models from design
12 Mixed technical material design
13 To create original designed three dimensional forms Pre research for creating forms
14 Implementing and presenting the project
15 Implementing and presenting the project
16 Final Assessment

Sources

Other Sources 1. Bates, L. (1972). Sanatı Görmek. Necla Yurtsever ve Zahir Güvemli (Çev.). İstanbul: Türkiye İş Bankası Kültür Yayınları.
2. Bilge, N. (2000). Modern ve Soyut Heykelin Doğuşu 1900-1950. İstanbul: Boğaziçi Üniversitesi Matbaası.
3. Özer, B. (1986). Yorumlar: Resim Heykel Mimarlık. İstanbul: Mimar Sinan Üniversitesi Yayınları.
4. Read, H. (1966). A Concise History of Modern Sculpture. London: Thames and Hudson.
5. Tanyeli, U. (1997). Heykel ve Mekan. Eczacıbaşı Sanat Ansiklopedisi. 2. Cilt. İstanbul: Yem Yayınları.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 15 10
Laboratory - -
Application 3 20
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation 1 10
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 25
Final Exam/Final Jury 1 35
Toplam 21 100
Percentage of Semester Work 65
Percentage of Final Work 35
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge of mathematics, physical sciences and the subjects specific to engineering disciplines; the ability to apply theoretical and practical knowledge of these areas in the solution of complex engineering problems.
2 The ability to define, formulate, and solve complex engineering problems; the ability to select and apply proper analysis and modeling methods for this purpose.
3 The ability to design a complex system, process, device or product under realistic constraints and conditions in such a way as to meet the specific requirements; the ability to apply modern design methods for this purpose.
4 The ability to select, and use modern techniques and tools needed to analyze and solve complex problems encountered in engineering practices; the ability to use information technologies effectively.
5 The ability to design experiments, conduct experiments, gather data, and analyze and interpret results for investigating complex engineering problems or research areas specific to engineering disciplines.
6 The ability to work efficiently in inter-, intra-, and multi-disciplinary teams; the ability to work individually.
7 Effective oral and written communication skills; The knowledge of, at least, one foreign language; the ability to write a report properly, understand previously written reports, prepare design and manufacturing reports, deliver influential presentations, give unequivocal instructions, and carry out the instructions properly.
8 Recognition of the need for lifelong learning; the ability to access information, follow developments in science and technology, and adapt and excel oneself continuously. X
9 Acting in conformity with the ethical principles; professional and ethical responsibility and knowledge of the standards employed in engineering applications.
10 Knowledge of business practices such as project management, risk management, and change management; awareness of entrepreneurship and innovation; knowledge of sustainable development.
11 Knowledge of the global and social effects of engineering practices on health, environment, and safety issues, and knowledge of the contemporary issues in engineering areas; awareness of the possible legal consequences of engineering practices.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application 3 6 18
Special Course Internship
Field Work
Study Hours Out of Class 2 2 4
Presentation/Seminar Prepration 1 6 6
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 10 10
Prepration of Final Exams/Final Jury 1 14 14
Total Workload 100