IT in Healthcare (ISE553) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
IT in Healthcare ISE553 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Information Systems Engineering Elective Courses
Course Level Ph.D.
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The objective of the course is to provide an understanding of fundamental concepts and activities on information technology as applied to health care. The course cover the topics include computer-based medical records, knowledge-bases systems, decision support systems, human-computer interfaces, systems integration, the digital library, and educational applications. This course presents an overview of medical informatics and its main applications.
Course Learning Outcomes The students who succeeded in this course;
  • Provide an overview of computer support in medicine and health care
  • Explain the data from patients including patient record, medical imaging and biosignal analysis
  • Identify patient-centered information systems
  • Describe medical knowledge and decision support process
  • Explain strategies for medical knowledge acquisition
  • Describe the components of a hospital management system
  • Explain the HCI perspective on medical informatics
  • Provide an information systems model for health care
Course Content Health data management; uses and content of the medical record; health statistics, biomedical research, and quality management; health services organization and delivery; information technology and systems.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to IT and Medical Informatics Chapter 2, 3, 4, 6
2 The Patient Record Chapter 7
3 Biosignal Analysis Chapter 8
4 Medical Imaging Chapter 9
5 Image Processing and Analysis Chapter 10
6 Patient-centered Information Systems Chapter 11, 12
7 Patient-centered Information Systems Chapter 13, 14
8 Medical Knowledge and Decision Support Chapter 15
9 Clinical Decision Support Systems Chapter 16
10 Strategies for Medical Knowledge Acquisition Chapter 17
11 Predictive Tools for Clinical Decision Support Chapter 18
12 Modeling of Health Care for Information Systems Development Chapter 19
13 Hospital Information Systems Chapter 20, 21
14 Human-Computer Interaction in Health Care Chapter 31
15 Final Examination Period Review of topics
16 Final Examination Period Review of topics

Sources

Course Book 1. 1. J.H. van Bemmel, M.A. Musen. Handbook of Medical Informatics, 1997. HMI , ISBN: 3540633510 http://www.mieur.nl/mihandbook/r_3_3/handbook/home.htm
Other Sources 2. Human, Social and Organizational Aspects of Health Information Systems. edited by A.W. Kushniruk & E. M. Borycki, IGI Global, 2008
3. Health Information Management Technology, an Applied Approach, Merida L. Johns (Editor), 2nd ed., AHIMA, ISBN: 978-1584261414, 2006
4. Essentials of Health Information Management: Principles and Practices, Michelle A. Green, Mary Jo Bowie, Delmar Cengage Learning, 2007, 978-0766845022

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 1 30
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 30
Final Exam/Final Jury 1 40
Toplam 3 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses
Major Area Courses
Supportive Courses X
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Comprehends the most advanced technology and literature in the field of software engineering research.
2 Gains the ability to conduct world-class research in software engineering and publish scholarly articles in top conferences and journals in the area.
3 Conducts quantitative and qualitative studies in software engineering.
4 Develops and applies software engineering approaches to acquire the necessary skills to bridge the gap between academia and industry in the field of software engineering and to solve real-world problems. X
5 Gains the ability to access the necessary information to follow current developments in science and technology, and to conduct scientific research or develop projects in the field of software engineering.
6 Gains awareness and a sense of responsibility regarding professional, legal, ethical, and social issues in the field of software engineering. X
7 Acquires project and risk management skills; gains awareness of the importance of entrepreneurship, innovation, and sustainable development; adapts international excellence standards for software engineering practices and methodologies.
8 Gains awareness of the universal, environmental, social, and legal consequences of software engineering practices when making decisions. X
9 Develops, adopts, and supports the sustainable use of excellence standards for software engineering practices. X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours)
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 5 80
Presentation/Seminar Prepration
Project
Report
Homework Assignments 3 15 45
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 20 20
Prepration of Final Exams/Final Jury 1 30 30
Total Workload 175