ECTS - System Analysis and Design

System Analysis and Design (IE503) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
System Analysis and Design IE503 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type N/A
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Question and Answer, Problem Solving.
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. Turan Erman ERKAN
Course Assistants
Course Objectives In this course, the students will be learning fundamental concepts of the system analysis and design to achieve clue about the application of these techniques to real world problems.
Course Learning Outcomes The students who succeeded in this course;
  • Students will learn the fundamental concepts of system analysis.
  • Students will have an insight about the role of system analysis for engineering design.
  • Students will evaluate and solve real life processes and problems using system analysis.
  • Students will conduct the implementation steps of a suggested solution to an outlined problem.
Course Content Requirements engineering and modeling, structural modeling, system architecture and user interface design, documentation, testing and installation, traceability, project planning and management.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to system analysis and design.
2 Introduction to system analysis and design.
3 Systems approach
4 Systems approach
5 Information systems, planning
6 Information systems, analysis
7 Information systems, design
8 Information systems, construction
9 Requirement engineering and modeling
10 Structural modeling
11 System architecture and user interface design
12 Documentation, testing and installation
13 Traceability
14 Project planning and management
15 Final Examination Period
16 Final Examination Period

Sources

Course Book 1. Kendall K.E., Kendall J.E:, Systems Analysis ad Design (8th Edition), Prentice Hall, 2010
Other Sources 2. F.S. Hillier and G.J. Lieberman, Introduction to Operations Research (8th ed.), McGraw-Hill, 2005.
3. H. A. Taha, Operations Research: An Introduction (8th ed.), Prentice-Hall, 2006.
4. Vanderbei R.,, Linear Programming: Foundations and Extensions, Springer, 2007.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project 1 30
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 30
Final Exam/Final Jury 1 40
Toplam 3 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Accumulated knowledge on mathematics, science and mechatronics engineering; an ability to apply the theoretical and applied knowledge of mathematics, science and mechatronics engineering to model and analyze mechatronics engineering problems.
2 An ability to differentiate, identify, formulate, and solve complex engineering problems; an ability to select and implement proper analysis, modeling and implementation techniques for the identified engineering problems.
3 An ability to design a complex system, product, component or process to meet the requirements under realistic constraints and conditions; an ability to apply contemporary design methodologies; an ability to implement effective engineering creativity techniques in mechatronics engineering. (Realistic constraints and conditions may include economics, environment, sustainability, producibility, ethics, human health, social and political problems.)
4 An ability to develop, select and use modern techniques, skills and tools for application of mechatronics engineering and robot technologies; an ability to use information and communications technologies effectively.
5 An ability to design experiments, perform experiments, collect and analyze data and assess the results for investigated problems on mechatronics engineering and robot technologies.
6 An ability to work effectively on single disciplinary and multi-disciplinary teams; an ability for individual work; ability to communicate and collaborate/cooperate effectively with other disciplines and scientific/engineering domains or working areas, ability to work with other disciplines.
7 An ability to express creative and original concepts and ideas effectively in Turkish and English language, oral and written.
8 An ability to reach information on different subjects required by the wide spectrum of applications of mechatronics engineering, criticize, assess and improve the knowledge-base; consciousness on the necessity of improvement and sustainability as a result of life-long learning; monitoring the developments on science and technology; awareness on entrepreneurship, innovative and sustainable development and ability for continuous renovation.
9 Be conscious on professional and ethical responsibility, competency on improving professional consciousness and contributing to the improvement of profession itself.
10 A knowledge on the applications at business life such as project management, risk management and change management and competency on planning, managing and leadership activities on the development of capabilities of workers who are under his/her responsibility working around a project.
11 Knowledge about the global, societal and individual effects of mechatronics engineering applications on the human health, environment and security and cultural values and problems of the era; consciousness on these issues; awareness of legal results of engineering solutions.
12 Competency on defining, analyzing and surveying databases and other sources, proposing solutions based on research work and scientific results and communicate and publish numerical and conceptual solutions.
13 Consciousness on the environment and social responsibility, competencies on observation, improvement and modify and implementation of projects for the society and social relations and be an individual within the society in such a way that planing, improving or changing the norms with a criticism.
14 A competency on developing strategy, policy and application plans on the mechatronics engineering and evaluating the results in the context of qualitative processes.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 1 16
Presentation/Seminar Prepration
Project 1 4 4
Report
Homework Assignments 4 4 16
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 16 16
Prepration of Final Exams/Final Jury 1 25 25
Total Workload 125