ECTS - Modeling, Analysis and Simulation

Modeling, Analysis and Simulation (ENE303) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Modeling, Analysis and Simulation ENE303 3 1 0 3 5
Pre-requisite Course(s)
PHYS 101, PHYS 102
Course Language English
Course Type N/A
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Demonstration, Discussion, Question and Answer, Drill and Practice, Project Design/Management.
Course Coordinator
Course Lecturer(s)
  • Assoc. Prof. Dr. Hüseyin OYMAK
Course Assistants
Course Objectives The objective of this course is to introduce fundamental principles and concepts in the modeling and simulation and to apply in energy systems engineering area.
Course Learning Outcomes The students who succeeded in this course;
  • Recognize the principles of modeling and simulation
  • Design and develop simulation models for energy systems
Course Content Translational mechanical systems, state-variable equations, inputoutput equations, matrix formulation, block diagrams and computer simulation, rotational mechanical systems, electrical systems, Laplace transform solutions of linear models.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to Modeling and Simulation Chapter 1
2 Systems Science and Systems Engineering Chapter 2
3 A Framework for Modeling and Simulation Chapter 3
4 Defining the Need for Models and Simulation Chapter 4
5 Creating a Modeling and Simulation Baseline Chapter 5
6 Developing Models and Simulation Chapter 6
7 Designing Models Chapter 7
8 Producing and Managing Data Chapter 8
9 Midterm Exam
10 Applications of Modeling and Simulation in Energy Systems Engineering, General Chapter 9
11 Application in Thermodynamics Chapter 10
12 Applications in Thermal Fluids Chapter 11
13 Applications in Renewable Systems Chapter 12
14 Applications in Conventional Systems Chapter 13
15 Verification, Validation and Accreditation Chapter 14
16 Final Exam

Sources

Other Sources 1. Energy Systems: Optimization, Modeling, Simulation, and Economic Aspects, Journal, Springer, ISSN: 1868-3967
2. Averill M Law, Simulation Modeling and Analysis, 4th Edition, McGraw-Hill, 2007, ISBN-13 978007125519-6
3. Modeling and Analysis of Dynamic Systems, Ramin Esfandiari, CRC Press, 2010 ISBN:9781439808450
4. David J. Cloud, Applied Modeling and Simulation, McGraw-Hill, 1998, ISBN-13 9780072283037
5. Thoma, J. Ould Bouamama, B., Modeling and Simulation in Thermal and Chemical Engineering, 2000, Springer, ISBN: 978-3-540-66388-1

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 5
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 8 5
Presentation - -
Project 1 20
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 20
Final Exam/Final Jury 1 50
Toplam 13 100
Percentage of Semester Work 50
Percentage of Final Work 50
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge in mathematics, science and subjects specific to the energy systems engineering discipline; the ability to apply theoretical and practical knowledge of these areas to complex engineering problems. X
2 The ability to identify, define, formulate and solve complex engineering problems; selecting and applying proper analysis and modeling techniques for this purpose. X
3 The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose.
4 The ability to develop, select and utilize modern techniques and tools essential for the analysis and determination of complex problems in energy systems engineering applications; the ability to utilize information technologies effectively. X
5 The ability to design experiments, conduct experiments, gather data, analyze and interpret results for the investigation of complex engineering problems or research topics specific to the energy systems engineering discipline.
6 The ability to work effectively in inter/inner disciplinary teams, the ability to work individually.
7 a)Effective oral and writen communication skills in Turkish; the ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and to receive clear and understandable instructions. b)The knowledge of at least one foreign language; the ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and to receive clear and understandable instructions.
8 Recognition of the need for lifelong learning; the ability to access information, to follow recent developments in science and technology.
9 a)The ability to behave according to ethical principles, awareness of professional and ethical responsibility; b)knowledge of the standards utilized in energy systems engineering applications.
10 Knowledge on business practices such as project management, risk management and change management; awareness about entrepreneurship, innovation; knowledge on sustainable development.
11 a) Knowledge on the effects of energy systems engineering applications on the universal and social dimensions of health, environment and safety; b) and awareness of the legal consequences of engineering solutions.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 2 28
Presentation/Seminar Prepration
Project 1 15 15
Report
Homework Assignments 8 2 16
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 10 20
Prepration of Final Exams/Final Jury 1 20 20
Total Workload 147