ECTS - Energy Laws and Regulations

Energy Laws and Regulations (ENE418) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Energy Laws and Regulations ENE418 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type N/A
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The aim of this elective course is to examine and evaluate the related laws and regulations and international agreements and protocols.
Course Learning Outcomes The students who succeeded in this course;
  • To understand the general principles or energy market
  • To understand the environmental and legal regulations for energy production
  • Become familier with electrical power systems and smart grid
Course Content An introduction to energy law and regulation in Turkey, energy market, nuclear safety regulations, renewable energy regulations and distributed generation, environmental impact assessment regulation, smart grid.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction: Framing the energy problem -
2 Basic principles of utility law -
3 Theory and practice or energy regulation -
4 Theory and practice or energy regulation -
5 Introduction to electrical power systems -
6 Introduction to electricity market -
7 Introduction to electricity market -
8 Midterm Exam
9 The basic regulatory framework for nuclear safety -
10 Renewable energy regulations and promotes -
11 Renewable energy regulations and promotes -
12 Renewable energy and distributed generation -
13 Conventional energy production regulations -
14 Environmental Impact Assessment Regulation -
15 Smart grid -
16 Final Exam

Sources

Other Sources 1. Casebook: Fred Bosselman et al., Energy, Economics and the Environment: Cases and Materials, 3rd Edition (Foundation Press: 2010)

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation 1 40
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 60
Final Exam/Final Jury 1 50
Toplam 3 150
Percentage of Semester Work 50
Percentage of Final Work 50
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge in mathematics, science and subjects specific to the energy systems engineering discipline; the ability to apply theoretical and practical knowledge of these areas to complex engineering problems.
2 The ability to identify, define, formulate and solve complex engineering problems; selecting and applying proper analysis and modeling techniques for this purpose.
3 The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose.
4 The ability to develop, select and utilize modern techniques and tools essential for the analysis and determination of complex problems in energy systems engineering applications; the ability to utilize information technologies effectively.
5 The ability to design experiments, conduct experiments, gather data, analyze and interpret results for the investigation of complex engineering problems or research topics specific to the energy systems engineering discipline.
6 The ability to work effectively in inter/inner disciplinary teams, the ability to work individually. X
7 a)Effective oral and writen communication skills in Turkish; the ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and to receive clear and understandable instructions. b)The knowledge of at least one foreign language; the ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and to receive clear and understandable instructions. X
8 Recognition of the need for lifelong learning; the ability to access information, to follow recent developments in science and technology.
9 a)The ability to behave according to ethical principles, awareness of professional and ethical responsibility; b)knowledge of the standards utilized in energy systems engineering applications.
10 Knowledge on business practices such as project management, risk management and change management; awareness about entrepreneurship, innovation; knowledge on sustainable development.
11 a) Knowledge on the effects of energy systems engineering applications on the universal and social dimensions of health, environment and safety; b) and awareness of the legal consequences of engineering solutions.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 3 42
Presentation/Seminar Prepration 1 5 5
Project 1 10 10
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 10 10
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 125