Combustion (ENE305) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Combustion ENE305 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Demonstration, Discussion, Question and Answer, Drill and Practice, Problem Solving.
Course Coordinator
Course Lecturer(s)
  • Assoc. Prof. Dr. Cihan Turhan
Course Assistants
Course Objectives The objective of the course is to give a broad engineering treatment of combustion technology with focus on fundamentals and gaseous, liquid, and solid fuel combustion systems.
Course Learning Outcomes The students who succeeded in this course;
  • Learn basic physical, chemical, and thermodynamic concepts that are important in combustion
  • Understand the fundamentals of chemical processes and the importance of chemical kinetics in combustion
  • Understand the general characteristics of laminar premixed and jet diffusion flames
Course Content Gaseous, liquid, and solid fuels, thermodynamics and kinetics of combustion, adiabatic flame temperature, combustion of gaseous and vaporized fuels, combustion of liquid fuels, combustion of solid fuels.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Scope and History of Combustion
2 Fuels
3 Fuels
4 Gas Mixtures
5 Thermodynamics of Combustion
6 Chemical Reactions
7 Chemical Reactions
8 Midterm Exam
9 Chemical Kinetics of Combustion
10 Chemical Kinetics of Combustion
11 Chemical and Phase Equilibrium
12 Combustion of Gaseous and Vaporized Fluids
13 Combustion of Gaseous and Vaporized Fluids
14 Premixed-Charge Engine Combustion
15 Premixed and Diffusion Flames
16 Final Exam

Sources

Course Book 1. An Introduction to Combustion, S. R. Turns, 2nd Ed., Mc Graw Hill, 2000
2. Combustion Engineering, G.C. Borman, K. W. Ragland, Mc Graw Hill, 1998
Other Sources 3. Combustion, Irvin Glassman, 2nd Edition, Academic Press, 1987
4. Elements of Chemical Reaction Engineering H. Scott Fogler, Prentice Hall, 2001
5. Journals: e.g. “Combustion and Flame”, “Combustion Science and Technology” , “Energy and Fuels”, “Fuel”

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 5
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 5 10
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 50
Final Exam/Final Jury 1 35
Toplam 9 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gains adequate knowledge in mathematics, science, and relevant engineering disciplines and acquires the ability to use theoretical and applied knowledge in these fields to solve complex engineering problems.
2 Gains the ability to identify, formulate, and solve complex engineering problems and the ability to select and apply appropriate analysis and modeling methods for this purpose.
3 Gains the ability to design a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements and to apply modern design methods for this purpose.
4 Gains the ability to select and use modern techniques and tools necessary for the analysis and solution of complex engineering problems encountered in engineering applications and the ability to use information technologies effectively.
5 Gains the ability to design experiments, conduct experiments, collect data, analyze results, and interpret findings for investigating complex engineering problems or discipline specific research questions. X
6 Gains the ability to work effectively in intra-disciplinary and multi-disciplinary teams and the ability to work individually.
7 a) Gains the ability to communicate effectively in written and oral form, b) Gains acquires proficiency in at least one foreign language, the ability to write effective reports and understand written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions.
8 Gains awareness of the need for lifelong learning and the ability to access information, follow developments in science and technology, and to continue to educate him/herself X
9 a)Gains the ability to behave according to ethical principles, awareness of professional and ethical responsibility. b) Gains knowledge of the standards utilized in energy systems engineering applications.
10 Gains knowledge on business practices such as project management, risk management and change management; awareness about entrepreneurship, innovation; knowledge on sustainable development.
11 a) Gain awareness of the effects of Energy Systems Engineering applications on health, environment and safety in universal and societal dimensions. b) Gain knowledge of the problems of the era reflected in the field of engineering; gain awareness of the legal consequences of engineering solutions.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration
Project 1 10 10
Report
Homework Assignments 5 2 10
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 7 14
Prepration of Final Exams/Final Jury 1 12 12
Total Workload 126