ECTS - Behaviour Based Engineering Design
Behaviour Based Engineering Design (MECE425) Course Detail
| Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
|---|---|---|---|---|---|---|---|
| Behaviour Based Engineering Design | MECE425 | Area Elective | 3 | 0 | 0 | 3 | 6 |
| Pre-requisite Course(s) |
|---|
| N/A |
| Course Language | English |
|---|---|
| Course Type | Elective Courses |
| Course Level | Bachelor’s Degree (First Cycle) |
| Mode of Delivery | Face To Face |
| Learning and Teaching Strategies | Lecture, Question and Answer, Problem Solving, Project Design/Management. |
| Course Lecturer(s) |
|
| Course Objectives | This course aims to introduce the basic theory and methodology of the upstream engineering design activity (conceptual design) that is the initial and most abstract stage of the design process. Special emphasize will be given to behavioural modeling tools and techniques for the upstream design yielding behaviour-based design of engineering systems. |
| Course Learning Outcomes |
The students who succeeded in this course;
|
| Course Content | Introduction to engineering design theory and methodology, modeling in design, function-behaviour-structure model for design, behaviour-based modeling; review of sets, relations and functions; graph theory; discrete-event system modeling; Petri nets; traditional design approaches; recent trends in engineering design; behaviour-based design applicat |
Weekly Subjects and Releated Preparation Studies
| Week | Subjects | Preparation |
|---|---|---|
| 1 | Introduction to engineering design theory and methodology, modeling in design | N/A |
| 2 | Function-behaviour-structure model for design, behaviour-based modeling | N/A |
| 3 | Review of sets, relations and functions | N/A |
| 4 | Graph theory | N/A |
| 5 | Graph theory (continued) | N/A |
| 6 | Discrete-event system modeling | N/A |
| 7 | Discrete-event system modeling (continued) | N/A |
| 8 | Petri Nets | N/A |
| 9 | Petri Nets (continued) | N/A |
| 10 | Traditional design approaches | N/A |
| 11 | Recent trends in engineering design | N/A |
| 12 | Behaviour-based design applications | N/A |
| 13 | Implementation on bio-inspired design | N/A |
| 14 | Case studies | N/A |
| 15 | Case studies | N/A |
| 16 | Final Examination | N/A |
Sources
Evaluation System
| Requirements | Number | Percentage of Grade |
|---|---|---|
| Attendance/Participation | - | - |
| Laboratory | - | - |
| Application | - | - |
| Field Work | - | - |
| Special Course Internship | - | - |
| Quizzes/Studio Critics | - | - |
| Homework Assignments | 4 | 10 |
| Presentation | - | - |
| Project | 1 | 35 |
| Report | - | - |
| Seminar | - | - |
| Midterms Exams/Midterms Jury | 1 | 25 |
| Final Exam/Final Jury | 1 | 30 |
| Toplam | 7 | 100 |
| Percentage of Semester Work | 70 |
|---|---|
| Percentage of Final Work | 30 |
| Total | 100 |
Course Category
| Core Courses | X |
|---|---|
| Major Area Courses | |
| Supportive Courses | |
| Media and Managment Skills Courses | |
| Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
| # | Program Qualifications / Competencies | Level of Contribution | ||||
|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | ||
| 1 | Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied knowledge in these areas in the solution of complex engineering problems. | |||||
| 2 | Ability to formulate, and solve complex mechatronics engineering problems; ability to select and apply proper analysis and modeling methods for this purpose. | X | ||||
| 3 | Ability to design a complex mechatronics engineering system, process, device or product under realistic constraints and conditions, in such a way as to meet the desired result; ability to apply modern design methods for this purpose. | X | ||||
| 4 | Ability to select and use modern techniques and tools needed for analyzing and solving complex problems encountered in mechatronics engineering and robot technology practices; ability to employ information technologies effectively. | |||||
| 5 | Ability to design and conduct experiments, gather data, analyze and interpret results for investigating complex mechatronics engineering and robot technology problems or research questions. | |||||
| 6 | Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually. | X | ||||
| 7 | Ability to communicate effectively, both orally and in writing; knowledge of a minimum of one foreign language; ability to write effective reports and comprehend written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions. | |||||
| 8 | Awareness of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself | X | ||||
| 9 | a-) Knowledge on behavior according to ethical principles, professional and ethical responsibility b-) Knowledge on standards used in engineering practices. | |||||
| 10 | a-) Knowledge about business life practices such as project management, risk management, and change management b-) Awareness in entrepreneurship, innovation; knowledge about sustainable development. | |||||
| 11 | Knowledge about the global and social effects of engineering practices on health, environment, and safety, and contemporary issues of the century reflected into the field of engineering; awareness of the legal consequences of engineering solutions. | |||||
| 12 | Competency on defining, analyzing and surveying databases and other sources, proposing solutions based on research work and scientific results and communicate and publish numerical and conceptual solutions in the field of mechatronics engineering. | |||||
| 13 | Consciousness on the environment and social responsibility, competencies on observation, improvement and modify and implementation of projects for the society and social relations and be an individual within the society in such a way that planning, improving or changing the norms with a criticism. | |||||
ECTS/Workload Table
| Activities | Number | Duration (Hours) | Total Workload |
|---|---|---|---|
| Course Hours (Including Exam Week: 16 x Total Hours) | 14 | 3 | 42 |
| Laboratory | |||
| Application | |||
| Special Course Internship | |||
| Field Work | |||
| Study Hours Out of Class | 14 | 2 | 28 |
| Presentation/Seminar Prepration | |||
| Project | 1 | 30 | 30 |
| Report | |||
| Homework Assignments | 4 | 2 | 8 |
| Quizzes/Studio Critics | |||
| Prepration of Midterm Exams/Midterm Jury | 1 | 6 | 6 |
| Prepration of Final Exams/Final Jury | 1 | 6 | 6 |
| Total Workload | 120 | ||
