Embeded System Design (CMPE434) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Embeded System Design CMPE434 Area Elective 2 2 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives Introducing a modern approach to embedded system design, presenting software design and hardware design in a unified manner by covering trends and challenges.
Course Learning Outcomes The students who succeeded in this course;
  • Providing an overall view (form a "system point of view") of the realization and applications of embedded systems.
  • Understanding the design and use of single-purpose processors ("hardware") and general-purpose processors ("software")
  • Describing memories and buses
  • Illustrating hardware/software tradeoffs using a digital camera example
  • Discussing advanced computation models, controls systems, chip technologies, and modern design tools
Course Content Embedded systems and their applications, metrics of embedded systems, components of embedded systems, realization of embedded systems, PCB technologies, simulation, emulation, rapid prototyping, testing and certification examples of realizations optimized for different applications, analysis of development costs and times, laboratory work on specif

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Embedded systems overview Main text, Chapter 1
2 Custom Single-purpose processors: Hardware Chapter 2
3 General-purpose processors: Software Chapter 3
4 Standard single-purpose processors: Peripherals Chapter 4
5 Memory chapter 5
6 Interfacing Chapter 6
7 Interfacing Chapter 6
8 Digital camera example Chapter 7
9 State machine and concurrent process models Chapter 8
10 State machine and concurrent process models Chapter 8
11 Control systems chapter 9
12 IC technology chapter 10
13 Design technology chapter 11
14 Design technology chapter 11

Sources

Course Book 1. Embedded System Design: A Unified Donanım/Yazılım Introduction, Frank Vahid and Tony Givargis, John Wiley & Sons, 2002.
Other Sources 2. 1- Wayne Wolf , “Computer As Components: Principles of Embedded Computer System Design”, Morgan Kaufmann, 2001
3. 2- High-Performance Embedded Computing: Architectures, Applications, and Methodologies, Wayne Wolf, Morgan Kaufmann Publishers, 2006
4. 3- Embedded System Design ; Peter Marwedel, Springer, 2006
5. 4- Programming Embedded Systems in C and C++ by Michael Barr, O'Reilly, 1999
6. 5- Embedded Systems Building Blocks, Jean J. Labrosse, CMP Books, Dec-1999

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 5
Laboratory 1 10
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 1 10
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 40
Final Exam/Final Jury 1 35
Toplam 6 100
Percentage of Semester Work 65
Percentage of Final Work 35
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied knowledge in these areas in the solution of complex engineering problems. X
2 Ability to formulate, and solve complex mechatronics engineering problems; ability to select and apply proper analysis and modeling methods for this purpose. X
3 Ability to design a complex mechatronics engineering system, process, device or product under realistic constraints and conditions, in such a way as to meet the desired result; ability to apply modern design methods for this purpose. X
4 Ability to select and use modern techniques and tools needed for analyzing and solving complex problems encountered in mechatronics engineering and robot technology practices; ability to employ information technologies effectively. X
5 Ability to design and conduct experiments, gather data, analyze and interpret results for investigating complex mechatronics engineering and robot technology problems or research questions. X
6 Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually. X
7 Ability to communicate effectively, both orally and in writing; knowledge of a minimum of one foreign language; ability to write effective reports and comprehend written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions. X
8 Awareness of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself X
9 a-) Knowledge on behavior according to ethical principles, professional and ethical responsibility b-) Knowledge on standards used in engineering practices. X
10 a-) Knowledge about business life practices such as project management, risk management, and change management b-) Awareness in entrepreneurship, innovation; knowledge about sustainable development. X
11 Knowledge about the global and social effects of engineering practices on health, environment, and safety, and contemporary issues of the century reflected into the field of engineering; awareness of the legal consequences of engineering solutions. X
12 Competency on defining, analyzing and surveying databases and other sources, proposing solutions based on research work and scientific results and communicate and publish numerical and conceptual solutions in the field of mechatronics engineering.
13 Consciousness on the environment and social responsibility, competencies on observation, improvement and modify and implementation of projects for the society and social relations and be an individual within the society in such a way that planning, improving or changing the norms with a criticism.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 4 64
Laboratory 2 10 20
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 1 16
Presentation/Seminar Prepration
Project 1 10 10
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 10 10
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 130