ECTS - Project Management in Manufacturing

Project Management in Manufacturing (MFGE420) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Project Management in Manufacturing MFGE420 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Question and Answer.
Course Coordinator
Course Lecturer(s)
  • Instructor Özgür Taylan Sarı
Course Assistants
Course Objectives The basic aim of this course is to recognize students a good foundation in the theory and applications of project management and to create the application of appropriate knowledge, processes, skills, tools, and techniques can have a significant impact on project success. Also this lecture provides and promotes a common vocabulary within the project management profession for discussing, writing, and applying project management concepts.
Course Learning Outcomes The students who succeeded in this course;
  • To define and manipulate advanced concepts and common terminology of engineering and social sciences
  • To acquire scientific knowledge in the project management field and ability to work independently
  • To work as a member of teams in projects actively and gain knowledge about responsibilities and field of activities
  • To increase knowledge and make practice regarding project management fields
Course Content Project management standards;project,portfolio,program and operation management concepts; managing participation,teamwork, and conflict;need identification and assessment,problem definition; creativity and idea generation;methods and tools of functional/physical/task decomposition;mind mapping;planning methods; cost estimation and budgeting;time management and scheduling;project quality management;resource allocation; project risk management techniques; project execution, monitoringtechniques

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Project Management Overview and Concepts Relationships Among Project Management, Program Management, and Portfolio Management
2 Project Life Cycle And Organization
3 Project Management Processes For A Project
4 Project Integration Management
5 Project Scope Management
6 Project Time Management
7 Midterm
8 Project Cost Management
9 Project Quality Management
10 Project Human Resource Management
11 Project Communications Management
12 Project Risk And Procurement Management
13 Project Presentations
14 Project Presentations
15 Final Exam
16 Final Exam

Sources

Course Book 1. A GUIDE TO THE PROJECT MANAGEMENT BODY OF KNOWLEDGE (PMBOK® Guide)—Fourth Edition, ISBN: 978-1-933890-51-7, Project Management Institute, Global Standarts, 2008.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 10
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project 1 25
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 25
Final Exam/Final Jury 1 50
Toplam 4 110
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied knowledge in these areas in the solution of complex engineering problems.
2 Ability to formulate, and solve complex mechatronics engineering problems; ability to select and apply proper analysis and modeling methods for this purpose.
3 Ability to design a complex mechatronics engineering system, process, device or product under realistic constraints and conditions, in such a way as to meet the desired result; ability to apply modern design methods for this purpose.
4 Ability to select and use modern techniques and tools needed for analyzing and solving complex problems encountered in mechatronics engineering and robot technology practices; ability to employ information technologies effectively.
5 Ability to design and conduct experiments, gather data, analyze and interpret results for investigating complex mechatronics engineering and robot technology problems or research questions.
6 Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually.
7 Ability to communicate effectively, both orally and in writing; knowledge of a minimum of one foreign language; ability to write effective reports and comprehend written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions.
8 Awareness of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself
9 a-) Knowledge on behavior according to ethical principles, professional and ethical responsibility b-) Knowledge on standards used in engineering practices.
10 a-) Knowledge about business life practices such as project management, risk management, and change management b-) Awareness in entrepreneurship, innovation; knowledge about sustainable development.
11 Knowledge about the global and social effects of engineering practices on health, environment, and safety, and contemporary issues of the century reflected into the field of engineering; awareness of the legal consequences of engineering solutions.
12 Competency on defining, analyzing and surveying databases and other sources, proposing solutions based on research work and scientific results and communicate and publish numerical and conceptual solutions in the field of mechatronics engineering.
13 Consciousness on the environment and social responsibility, competencies on observation, improvement and modify and implementation of projects for the society and social relations and be an individual within the society in such a way that planning, improving or changing the norms with a criticism.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours)
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration
Project 1 20 20
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 10 20
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 87