Fluid Mechanics (AE307) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Fluid Mechanics AE307 Area Elective 3 1 0 3 6
Pre-requisite Course(s)
MATH152
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Question and Answer, Drill and Practice, Problem Solving.
Course Coordinator
Course Lecturer(s)
  • Prof. Dr. Hasan Akay
Course Assistants
Course Objectives To familiarize students with basic concepts of fluid mechanics, properties of fluids, pressure and fluid statics, fluid kinematics, Bernoulli and energy equations, momentum analysis of flow systems, dimensional analysis and modeling, internal flows, external flows–drag and lift.
Course Learning Outcomes The students who succeeded in this course;
  • Define and use basic concepts of fluid mechanics and properties of fluids .
  • Solve pressure and fluid statics problems.
  • Express and use fluid kinematics equations involving velocity, acceleration, vorticity, rate of strain, irrotationalty and rotationality.
  • Solve problems involving Bernoulli and energy equations in control volumes .
  • Perform momentum analysis calculations in flow systems and control volumes.
  • Perform dimensional analysis and solve similarity problems for modeling.
  • Solve internal flow problems, including design of pipes and piping systems with pumps and turbines.
  • Solve external flow problems, including flat plates, spheres, cylinders, airfoils and aerodynamic design concepts.
Course Content Introduction to basic concepts of fluid mechanics; properties of fluids; pressure and fluid statics, fluid kinematics, Bernoulli and energy equations, momentum analysis of flow systems, dimensional analysis and modeling, internal flow, external flow ? drag and lift.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 About the course and Chapter 1. Introduction and Basic Concepts Reading test on Chapter 1
2 Chapter 2. Properties of Fluids Reading test on Chapter 2
3 Chapter 3. Pressure and Fluid Statics Reading test on Chapter 3
4 Chapter 3. Pressure and Fluid Statics Reading test on Chapter 3
5 Chapter 4. Fluid Kinematics Reading test on Chapter 4
6 Chapter 5. Bernoulli and Energy Equations Reading test on Chapter 5
7 Chapter 5. Bernoulli and Energy Equations Reading test on Chapter 5
8 Chapter 6. Momentum Analysis of Flow Systems Reading test on Chapter 6
9 Chapter 7. Dimensional Analysis and Modeling Reading test on Chapter 7
10 Chapter 8. Internal Flow Reading test on Chapter 8
11 Chapter 8. Internal Flow Reading test on Chapter 8
12 Chapter 11. External Flow – Drag and Lift Reading test on Chapter 11
13 Chapter 11. External Flow – Drag and Lift Reading test on Chapter 11
14 Review
15 Final Exam

Sources

Course Book 1. Yunus A. Çengel and John M. Cimbala, Fluid Mechanics, Third Edition in SI units, McGraw-Hill, 2014 (e-book thru’ McGraw Hill Connect platform)

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 5
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 15 30
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 35
Final Exam/Final Jury 1 30
Toplam 19 100
Percentage of Semester Work 70
Percentage of Final Work 30
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied knowledge in these areas in the solution of complex engineering problems.
2 Ability to formulate, and solve complex mechatronics engineering problems; ability to select and apply proper analysis and modeling methods for this purpose.
3 Ability to design a complex mechatronics engineering system, process, device or product under realistic constraints and conditions, in such a way as to meet the desired result; ability to apply modern design methods for this purpose.
4 Ability to select and use modern techniques and tools needed for analyzing and solving complex problems encountered in mechatronics engineering and robot technology practices; ability to employ information technologies effectively.
5 Ability to design and conduct experiments, gather data, analyze and interpret results for investigating complex mechatronics engineering and robot technology problems or research questions.
6 Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually.
7 Ability to communicate effectively, both orally and in writing; knowledge of a minimum of one foreign language; ability to write effective reports and comprehend written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions.
8 Awareness of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself
9 a-) Knowledge on behavior according to ethical principles, professional and ethical responsibility b-) Knowledge on standards used in engineering practices.
10 a-) Knowledge about business life practices such as project management, risk management, and change management b-) Awareness in entrepreneurship, innovation; knowledge about sustainable development.
11 Knowledge about the global and social effects of engineering practices on health, environment, and safety, and contemporary issues of the century reflected into the field of engineering; awareness of the legal consequences of engineering solutions.
12 Competency on defining, analyzing and surveying databases and other sources, proposing solutions based on research work and scientific results and communicate and publish numerical and conceptual solutions in the field of mechatronics engineering.
13 Consciousness on the environment and social responsibility, competencies on observation, improvement and modify and implementation of projects for the society and social relations and be an individual within the society in such a way that planning, improving or changing the norms with a criticism.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 14 3 42
Laboratory 14 1 14
Application 5 3 15
Special Course Internship
Field Work
Study Hours Out of Class 14 2 28
Presentation/Seminar Prepration
Project
Report
Homework Assignments 10 3 30
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 5 10
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 149