ECTS - Automotive Manufacturing Processes Using Lightweight Metals
Automotive Manufacturing Processes Using Lightweight Metals (AE411) Course Detail
| Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
|---|---|---|---|---|---|---|---|
| Automotive Manufacturing Processes Using Lightweight Metals | AE411 | Area Elective | 3 | 1 | 0 | 3 | 5 |
| Pre-requisite Course(s) |
|---|
| MATE207 |
| Course Language | English |
|---|---|
| Course Type | Elective Courses |
| Course Level | Bachelor’s Degree (First Cycle) |
| Mode of Delivery | Face To Face |
| Learning and Teaching Strategies | Lecture, Discussion, Drill and Practice, Problem Solving. |
| Course Lecturer(s) |
|
| Course Objectives | The objective of the course is to introduce the developed materials in automotive sector, to provide the basic knowledge needed to explore the application of these new materials in automobile field, and to develop knowledge in recent trends in manufacturing techniques of automobile components. |
| Course Learning Outcomes |
The students who succeeded in this course;
|
| Course Content | Advanced lightweight metals and manufacturing processes for automotive applications; metallurgy of lightweight automotive metals; engineering joining processes for metals; design for manufacturing using lightweight automotive metals. |
Weekly Subjects and Releated Preparation Studies
| Week | Subjects | Preparation |
|---|---|---|
| 1 | Introduction to the concept of lightweighting in Automotive Engineering I | Lecture notes and presentations on Moodle website |
| 2 | Introduction to the concept of lightweighting in Automotive Engineering II | Lecture notes and presentations on Moodle website |
| 3 | The traditional manufacturing Processes (such as Machining, Bulk Forming, Casting, Forging, etc.) | Lecture notes and presentations on Moodle website |
| 4 | Manufacturing Technologies Aluminum such as Foam, Extrusion, Hydroforming, Roll-forming, Molding and 3D Printing | Lecture notes and presentations on Moodle website |
| 5 | Advanced lightweight metals and manufacturing processes for automotive applications (AHSS, Advance High Strength Steels) | Lecture notes and presentations on Moodle website |
| 6 | Advanced lightweight metals and manufacturing processes for automotive applications (Aluminum and alloys) | Lecture notes and presentations on Moodle website |
| 7 | Midterm I and Term project activities | |
| 8 | Advanced lightweight metals and manufacturing processes for automotive applications (Magnesium and alloys) | Lecture notes and presentations on Moodle website |
| 9 | Engineering metal Joining technology (Types, design method, mechanical performance, application, joining processes) | Lecture notes and presentations on Moodle website |
| 10 | The Metallurgical terms used in Mechanics of Metals (Resilience and toughness, Rigidity and Stiffness, Stiffness and Weight Ratio, stress, strain, etc.) | Lecture notes and presentations on Moodle website |
| 11 | Design for manufacturing using Lightweight Automotive Metals, Aluminum and alloys | Lecture notes and presentations on Moodle website |
| 12 | Design for manufacturing using Lightweight Automotive Metals, Magnesium and alloys | Lecture notes and presentations on Moodle website |
| 13 | Design for manufacturing using Lightweight Automotive Metals, AHSS | Lecture notes and presentations on Moodle website |
| 14 | Presentations of term projects |
Sources
| Course Book | 1. Materials, design and manufacturing for lightweight vehicles, Prof. P. K. Mallick, Woodhead Publishing/CRC Press, 2010. |
|---|---|
| Other Sources | 2. Automotive Engineering: Lightweight, Functional, and Novel Materials, Brian Cantor, P. Grant, C. Johnston, February 19, 2008, ISBN 9780750310017. |
| 3. Lightweight Composite Structures in Transport, Design, Manufacturing, Analysis and Performance, by James Njuguna, 29th January 2016, eBook ISBN: 9781782423430,ü Hardcover ISBN: 9781782423256. |
Evaluation System
| Requirements | Number | Percentage of Grade |
|---|---|---|
| Attendance/Participation | - | - |
| Laboratory | 1 | 10 |
| Application | - | - |
| Field Work | - | - |
| Special Course Internship | - | - |
| Quizzes/Studio Critics | - | - |
| Homework Assignments | 10 | 10 |
| Presentation | 1 | 15 |
| Project | 1 | 15 |
| Report | - | - |
| Seminar | - | - |
| Midterms Exams/Midterms Jury | 1 | 20 |
| Final Exam/Final Jury | 1 | 30 |
| Toplam | 15 | 100 |
| Percentage of Semester Work | |
|---|---|
| Percentage of Final Work | 100 |
| Total | 100 |
Course Category
| Core Courses | X |
|---|---|
| Major Area Courses | |
| Supportive Courses | |
| Media and Managment Skills Courses | |
| Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
| # | Program Qualifications / Competencies | Level of Contribution | ||||
|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | ||
| 1 | Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied knowledge in these areas in the solution of complex engineering problems. | |||||
| 2 | Ability to formulate, and solve complex mechatronics engineering problems; ability to select and apply proper analysis and modeling methods for this purpose. | |||||
| 3 | Ability to design a complex mechatronics engineering system, process, device or product under realistic constraints and conditions, in such a way as to meet the desired result; ability to apply modern design methods for this purpose. | |||||
| 4 | Ability to select and use modern techniques and tools needed for analyzing and solving complex problems encountered in mechatronics engineering and robot technology practices; ability to employ information technologies effectively. | |||||
| 5 | Ability to design and conduct experiments, gather data, analyze and interpret results for investigating complex mechatronics engineering and robot technology problems or research questions. | |||||
| 6 | Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually. | |||||
| 7 | Ability to communicate effectively, both orally and in writing; knowledge of a minimum of one foreign language; ability to write effective reports and comprehend written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions. | |||||
| 8 | Awareness of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself | |||||
| 9 | a-) Knowledge on behavior according to ethical principles, professional and ethical responsibility b-) Knowledge on standards used in engineering practices. | |||||
| 10 | a-) Knowledge about business life practices such as project management, risk management, and change management b-) Awareness in entrepreneurship, innovation; knowledge about sustainable development. | |||||
| 11 | Knowledge about the global and social effects of engineering practices on health, environment, and safety, and contemporary issues of the century reflected into the field of engineering; awareness of the legal consequences of engineering solutions. | |||||
| 12 | Competency on defining, analyzing and surveying databases and other sources, proposing solutions based on research work and scientific results and communicate and publish numerical and conceptual solutions in the field of mechatronics engineering. | |||||
| 13 | Consciousness on the environment and social responsibility, competencies on observation, improvement and modify and implementation of projects for the society and social relations and be an individual within the society in such a way that planning, improving or changing the norms with a criticism. | |||||
ECTS/Workload Table
| Activities | Number | Duration (Hours) | Total Workload |
|---|---|---|---|
| Course Hours (Including Exam Week: 16 x Total Hours) | 14 | 2 | 28 |
| Laboratory | |||
| Application | 14 | 2 | 28 |
| Special Course Internship | |||
| Field Work | |||
| Study Hours Out of Class | |||
| Presentation/Seminar Prepration | 1 | 10 | 10 |
| Project | 1 | 20 | 20 |
| Report | |||
| Homework Assignments | 10 | 2 | 20 |
| Quizzes/Studio Critics | |||
| Prepration of Midterm Exams/Midterm Jury | 1 | 8 | 8 |
| Prepration of Final Exams/Final Jury | 1 | 10 | 10 |
| Total Workload | 124 | ||
