ECTS - Electric and Hybrid Vehicles

Electric and Hybrid Vehicles (AE434) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Electric and Hybrid Vehicles AE434 Area Elective 3 1 0 4 5
Pre-requisite Course(s)
(EE234 veya EE210)
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Question and Answer, Problem Solving.
Course Coordinator
Course Lecturer(s)
  • Instructor Dr. Ali Emin
Course Assistants
Course Objectives This course aims to give the students the understanding of the electric and hybrid vehicle concept and the theoretical background on which this concept is based.
Course Learning Outcomes The students who succeeded in this course;
  • Define the electric car concept, electric/hybrid vehicle types and components.
  • Model the road resistance forces.
  • Model the energy flow from source to wheel in electric/hybrid vehicle.
  • Model the speed /torque coupling in a hybrid drivetrain.
  • Optimal hybridization ratio.
  • Model the battery energy source.
  • Define the alternative energy sources and stores.
  • Identify the definition and function of the electric motors.
Course Content Electric vehicle components; history of electric vehicles; types of electric vehicles; batteries and battery modeling; alternative energy sources and stores (photovoltaics, flywheels, capacitors, fuel cells); DC and AC electric motors, brushed DC motors, and brushless electric motors; power electronics and motor drives; electric vehicle drivetrain.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Environmental Impact and History of Modern Transportation
2 Fundamentals of Vehicle Propulsion (Internal Combustion Engine and Electric motor) and Braking
3 Fundamentals of Vehicle Transmission
4 Architecture of Electric and Hybrid Vehicles
5 Design Principle of Series (Electrical Coupling) Hybrid Electric Drivetrain
6 Parallel (Mechanically Coupled) Hybrid Electric Drivetrain Design
7 Mild Hybrid Electric Drivetrain Design
8 Peaking Power Sources and Energy Storage Midterm
9 Fundamentals of Regenerative Braking
10 Fuel Cell Hybrid Electric Drivetrain Design
11 Design of Full-Size-Engine HEV with Optimal Hybridization Ratio
12 DC and AC Electric Motors
13 Brushless Electric Motors
14 Brushed DC Motors
15 Final Exam

Sources

Course Book 1. - Modern Electric, Hybrid Electric, and Fuel Cell Vehicles, by M. Ehsani, 3rd Edition, CRC Press, Taylor & Francis Group (2018)
2. - Electric Machinery Fundamentals, by Stephen J. Chapman, 5th Edition, McGraw Hill (2005)

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 15 5
Laboratory 4 15
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 1 5
Presentation 1 5
Project 1 20
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 20
Final Exam/Final Jury 1 30
Toplam 24 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge in mathematics, science and engineering subjects pertaining to the relevant discipline; ability to use theoretical and applied knowledge in these areas in the solution of complex engineering problems.
2 Ability to formulate, and solve complex mechatronics engineering problems; ability to select and apply proper analysis and modeling methods for this purpose.
3 Ability to design a complex mechatronics engineering system, process, device or product under realistic constraints and conditions, in such a way as to meet the desired result; ability to apply modern design methods for this purpose.
4 Ability to select and use modern techniques and tools needed for analyzing and solving complex problems encountered in mechatronics engineering and robot technology practices; ability to employ information technologies effectively.
5 Ability to design and conduct experiments, gather data, analyze and interpret results for investigating complex mechatronics engineering and robot technology problems or research questions.
6 Ability to work efficiently in intra-disciplinary and multi-disciplinary teams; ability to work individually.
7 Ability to communicate effectively, both orally and in writing; knowledge of a minimum of one foreign language; ability to write effective reports and comprehend written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions.
8 Awareness of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself
9 a-) Knowledge on behavior according to ethical principles, professional and ethical responsibility b-) Knowledge on standards used in engineering practices.
10 a-) Knowledge about business life practices such as project management, risk management, and change management b-) Awareness in entrepreneurship, innovation; knowledge about sustainable development.
11 Knowledge about the global and social effects of engineering practices on health, environment, and safety, and contemporary issues of the century reflected into the field of engineering; awareness of the legal consequences of engineering solutions.
12 Competency on defining, analyzing and surveying databases and other sources, proposing solutions based on research work and scientific results and communicate and publish numerical and conceptual solutions in the field of mechatronics engineering.
13 Consciousness on the environment and social responsibility, competencies on observation, improvement and modify and implementation of projects for the society and social relations and be an individual within the society in such a way that planning, improving or changing the norms with a criticism.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 14 4 56
Laboratory 4 2 8
Application
Special Course Internship
Field Work 14 1 14
Study Hours Out of Class 7 3 21
Presentation/Seminar Prepration 1 3 3
Project 1 10 10
Report
Homework Assignments 1 3 3
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 6 6
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 131