Dynamics (MECE204) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Dynamics MECE204 4. Semester 2 2 0 3 6
Pre-requisite Course(s)
(ME211 veya ME201)
Course Language English
Course Type Compulsory Departmental Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies .
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. Ali EMİN
Course Assistants
Course Objectives The objective of this course is to introduce students the plane motion of particles and rigid bodies with mathematical descriptions.
Course Learning Outcomes The students who succeeded in this course;
  • 1. analyze the kinematics of the engineering problems for the particle and the rigid body.
  • 2. apply Newton's second law of motion to analyze the relation between force and motion.
  • 3. apply the work-energy principles to engineering problems for the particle and the rigid body.
  • 4. solve impulse-momentum problems for the particle and the rigid body.
Course Content Particles and rigid bodies with respect to planar motions; kinematics and kinetics, methods of Newton?s second law, work energy and impulse-momentum.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction of Dynamics, Kinematics of particles: Rectilinear Motion
2 Kinematics of particles: Plane Curvilinear Motion, Space Curvilinear Motion
3 Kinematics of particles: Relative Motion, Constrained Motion
4 Kinetics of particles: Newton’s second law
5 Kinetics of particles: Newton’s second law (cont’d)
6 Kinetics of particles: Work and Energy
7 Kinetics of particles: Work and Energy (cont’d)
8 Kinetics of particles: Impulse and Momentum
9 Kinetics of particles: Impact and Kinetics of systems of particles
10 Plane Kinematics of Rigid Bodies
11 Plane Kinematics of Rigid Bodies (cont’d)
12 Plane Kinetics of Rigid Bodies: Newton’s second law
13 Plane Kinetics of Rigid Bodies: Work and Energy
14 Plane Kinetics of Rigid Bodies: Impulse and Momentum
15 Exam Week
16 Exam Week

Sources

Course Book 1. Meriam, J. L., Kraige, L. G., & Bolton, J. N., “Engineering mechanics: dynamics”, John Wiley & Sons.
Other Sources 2. Beer, F.P. and Johnston, E.R., “Vector Mechanics for Engineers: Dynamics” McGraw-Hill.
3. Hibbeler, R.C., “Engineering Mechanics: Dynamics”, Pearson Education.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 4 20
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 40
Final Exam/Final Jury 1 40
Toplam 7 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 An ability to apply knowledge of mathematics, science, and engineering.
2 An ability to design and conduct experiments, as well as to analyze and interpret data.
3 An ability to design a system, component, or process to meet desired needs.
4 An ability to function on multi-disciplinary teams.
5 An ability to identify, formulate, and solve engineering problems.
6 An understanding of professional and ethical responsibility.
7 An ability to communicate effectively.
8 The broad education necessary to understand the impact of engineering solutions in a global and societal context.
9 Recognition of the need for, and an ability to engage in life-long learning.
10 Knowledge of contemporary issues.
11 An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
12 Skills in project management and recognition of international standards and methodologies

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 14 3 42
Laboratory
Application 14 1 14
Special Course Internship
Field Work
Study Hours Out of Class 14 3 42
Presentation/Seminar Prepration
Project
Report
Homework Assignments 4 3 12
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 10 20
Prepration of Final Exams/Final Jury 1 20 20
Total Workload 150