Power Plant Engineering (ENE428) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Power Plant Engineering ENE428 3 0 0 3 5
Pre-requisite Course(s)
ENE203 Thermodynamics I or EE352 Electromechanical Energy Conversion
Course Language English
Course Type N/A
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Demonstration, Discussion, Experiment, Question and Answer, Drill and Practice.
Course Coordinator
Course Lecturer(s)
  • Prof. Dr. Ayhan ALBOSTAN
Course Assistants
Course Objectives Provide students a broad understanding of electricity generation
Course Learning Outcomes The students who succeeded in this course;
  • Students will have a basic understanding of conversion of coal, oil, gas, nuclear, hydro, solar, geothermal, etc. energy to electrical energy
  • Students will understand the operation and major components of electric generating plants
Course Content Analysis and design of steam supply systems, electrical generating systems, and auxiliary systems; nuclear, fossil, hydraulic and renewable energy sources, power plant efficiency and operation.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction; Energy and Electricity Fundamentals, Thermodynamics, Carnot cycle Chapter 1
2 Rankine and Brayton Cycle Chapter 4
3 Fossil fuels: Coal, Oil, Natural Gas Chapter 5
4 Combustion Chapter 6
5 Fossil fuels: By-products, Synthetic Fuels, Biomass Chapter 7
6 Solar Energy Principles, Solar Energy Calculations, Solar Thermal, Solar Photovoltaics Chapter 8
7 Gas Turbine Energy and Systems Chapter 9
8 Combined Cycle Chapter 15
9 Midterm Exam
10 Nuclear Fission Chapter 11
11 Nuclear Power Plants Chapter 12
12 Cooling Cycle; Thermal Pollution Chapter 13
13 Geothermal Power Chapter 14
14 Hydroelectric Power Chapter 16
15 Environmental Impact, Electricity Economics Chapter 17
16 Final Exam

Sources

Course Book 1. M. M. El-Wakil, Powerplant Technology, McGraw-Hill, 1984 veya 2002.
Other Sources 2. Black& Veatch, Power Plant Engineering, Springer, 1996

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 5
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 45
Final Exam/Final Jury 1 50
Toplam 3 100
Percentage of Semester Work 40
Percentage of Final Work 60
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 An ability to apply knowledge of mathematics, science, and engineering. X
2 An ability to design and conduct experiments, as well as to analyze and interpret data. X
3 An ability to design a system, component, or process to meet desired needs. X
4 An ability to function on multi-disciplinary teams. X
5 An ability to identify, formulate, and solve engineering problems. X
6 An understanding of professional and ethical responsibility. X
7 An ability to communicate effectively. X
8 The broad education necessary to understand the impact of engineering solutions in a global and societal context. X
9 Recognition of the need for, and an ability to engage in life-long learning. X
10 Knowledge of contemporary issues. X
11 An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice. X
12 Skills in project management and recognition of international standards and methodologies

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 2 28
Presentation/Seminar Prepration
Project 1 10 10
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 15 30
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 126