Wind Energy Technologies (ENE312) Ders Detayları

Course Name Corse Code Dönemi Lecture Hours Uygulama Saati Lab Hours Credit ECTS
Wind Energy Technologies ENE312 Elective Courses 3 1 0 3 5
Pre-requisite Course(s)
N/A
Course Language İngilizce
Course Type Technical Elective Courses
Course Level Lisans
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Demonstration, Discussion, Experiment, Question and Answer, Drill and Practice.
Course Coordinator
Course Lecturer(s)
  • Prof. Dr. Aysel ATIMTAY
Course Assistants
Course Objectives To teach the fundamentals of wind and wave energy conversion systems. To introduce the basic design parameters in projecting wind turbines.
Course Learning Outcomes The students who succeeded in this course;
  • To understand the wind and wave energy
  • To understand why such energy resources are needed and utilized
  • To apply some experiments related with wind energy
  • En önemli parametrelerin kullanımı ile rüzgar türbini tasarımı
  • To discuss projecting, planning, installation and commissioning of wind turbines
  • To learn wave energy conversion systems
Course Content Wind characteristics, wind energy, wind turbines, design of wind turbines, projecting, planning and economy, wave energy and wave energy conversion systems.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Physics of Wind Chapter 1
2 Wind Energy and Power Chapter 2
3 Small Turbines Chapter 3
4 Utility Scale Turbines Chapter 4
5 Electrical Components of Turbines Chapter 5
6 Aerodynamics of Wind Turbine Blades Chapter 6
7 Project Sitting Chapter 7
8 Midterm Exam
9 Wind Resource Assessment Chapter 8
10 Wind Speed and Direction Measurement Chapter 9
11 Assessment and Planning of Wind Projects Chapter 10
12 Installation and Commissioning of Wind Projects Chapter 11
13 Wind Energy Economics Chapter 12
14 Wave Energy
15 Wave Energy Conversion Systems
16 Final Exam

Sources

Course Book 1. Wind Energy Engineering, 1st Edition, Pramod Jain, 2011, Mc-Graw Hill
Other Sources 2. Ocean Energy Tide and Tidal Power, Roger H. Charlier &Charles W. Finkl, Springer, 2009
3. Wave Energy Conversion, John Brooke, Elsevier Ocean Engineering Series Volume 6, 2003.
4. Wind Energy Renewable Energy and the Environment, Vaughn Nelson, Taylor& Francis, 2009
5. Wind and Solar Power Systems: Design, Analysis, and Operation, Second Edition, Mukund R. Patel, Taylor Francis (2005)
6. Wind Energy Explained, Theory, Design and Application, J.F. Manwell, J.G. Mcgowan and A. Rogers, Wiley 2002
7. Wind Energy, Fundamentals, Resource Analysis and Economics, Sathyajith Mathew, Springer-VBH, 2006.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury - -
Final Exam/Final Jury - -
Toplam 0 0
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 An ability to apply knowledge of mathematics, science, and engineering. X
2 An ability to design and conduct experiments, as well as to analyze and interpret data. X
3 An ability to design a system, component, or process to meet desired needs. X
4 An ability to function on multi-disciplinary teams. X
5 An ability to identify, formulate, and solve engineering problems. X
6 An understanding of professional and ethical responsibility. X
7 An ability to communicate effectively. X
8 The broad education necessary to understand the impact of engineering solutions in a global and societal context. X
9 Recognition of the need for, and an ability to engage in life-long learning. X
10 Knowledge of contemporary issues. X
11 An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice. X
12 Skills in project management and recognition of international standards and methodologies

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 14 3 42
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 2 28
Presentation/Seminar Prepration 1 5 5
Project 1 15 15
Report
Homework Assignments 4 2 8
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 10 10
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 123