Coastal Hydraulics (CE573) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Coastal Hydraulics CE573 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Demonstration, Discussion, Question and Answer.
Course Coordinator
Course Lecturer(s)
  • Assoc. Prof. Dr. Yakup DARAMA
Course Assistants
Course Objectives The objective of this course is to introduce the water wave theories and the applications of these theories in coastal engineering. This course aims to enable the students to understand the linear and non-linear wave theories, engineering wave properties and wave statistics and spectra.
Course Learning Outcomes The students who succeeded in this course;
  • The students will learn the Small Amplitude Wave Theory.
  • The students will learn the water particle kinematics.
  • The students will learn the standing and progressive waves.
  • The students will study the transformation of waves entering the shallow water.
  • The students will study the non-linear wave theories.
  • Students will learn basics of wave statistics and spectra.
Course Content Small amplitude wave theory, non-linear wave theories (Stokes, Cnoidal), solitary wave theory, water particle kinematics, wave transformations, wave height distribution and wave spectrum.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Review: Mathematical tools essential in coastal hydraulics
2 Review: Hydrodynamics
3 Small Amplitude Wave Theory
4 Small Amplitude Wave Theory
5 Standing Waves and Progressive Waves
6 Water Particle Kinematics for Standing Waves
7 Water Particle Kinematics for Progresive Waves
8 Pressure Field under a Standing Wave and a Progressive Wave
9 Transformation of Waves Entering Shallow Water
10 Transformation of Waves Entering Shallow Water
11 Non-linear Wave Theories (Stokes and Cnoidal)
12 Solitary Wave Theory
13 Wave Statistics -Wave Height Distribution
14 Wave Statistics -Wave Spectra
15 Final Exam Period
16 Final Exam Period

Sources

Other Sources 1. Ergin, A., Coastal Engineering, METU Press, October 2009.
2. Dean, R.G. and Dalrymple, R.A., Water Wave Mechanics for Engineers and Scientists, Advanced Series on Ocean Engineering, Vol.2, 12th Edition, World Scientific Press, 2009.
3. Kamphuis, J.W., Introduction to Coastal Engineering and Management, Advanced Series on Ocean Engineering, Vol.30, 2nd Edition, World Scientific Press, 2010.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project 1 20
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 40
Final Exam/Final Jury 1 40
Toplam 4 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gains the ability to have in-depth knowledge of mathematics, science, and engineering, and to use this knowledge in solving Civil Engineering problems.
2 Gains the ability to design and produce Civil Engineering systems under economic, environmental sustainability, and manufacturability constraints.
3 Gains the ability to identify, define, formulate, and solve complex engineering problems, and acquires the ability to select and apply appropriate analysis and modeling methods for this purpose.
4 Gains the ability to develop an approach to solve encountered engineering problems, and to design and conduct models and experiments. X
5 Gains the ability to effectively use modern engineering tools, techniques, and capabilities necessary for design and other engineering applications.
6 Gains the ability to independently conduct fundamental research in the field, report research results effectively, and present them at scientific meetings.
7 Acquires sufficient verbal and written English skills to follow scientific developments in the field and to communicate with colleagues.
8 Gains the ability to effectively use the knowledge acquired in intra-disciplinary and interdisciplinary teams, and to take leadership roles in such teams.
9 Gains awareness of the necessity of lifelong learning, personal development, and continuous self-renewal in the field; follows developments in science and technology; acquires awareness of entrepreneurship and innovation.
10 Recognizes the importance of considering social, scientific, and ethical values in the stages of collecting, interpreting, disseminating, and applying data related to civil engineering problems.
11 Gains the competence to critically examine, develop, and, when necessary, take action to change social relations and the norms that govern them.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 2 28
Presentation/Seminar Prepration
Project 1 10 10
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 10 20
Prepration of Final Exams/Final Jury 1 19 19
Total Workload 125