ECTS - Integrated Coastal Zone Management

Integrated Coastal Zone Management (CE471) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Integrated Coastal Zone Management CE471 Area Elective 3 0 0 3 6
Pre-requisite Course(s)
CE307
Course Language English
Course Type Elective Courses
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Question and Answer, Problem Solving.
Course Coordinator
Course Lecturer(s)
  • Assoc. Prof. Dr. Yakup DARAMA
Course Assistants
Course Objectives The aim of this course is to bring forward the physical and ecological properties of the coastal zones and the marine environment; to give a detailed description of pressures on the coast and to introduce the concepts of sustainable development and integrated coastal zone management (ICZM).
Course Learning Outcomes The students who succeeded in this course;
  • The students will learn the physical and ecological properties of the coastal zones and the marine environment.
  • The students will learn the processes involved within the coastal zone.
  • The students will learn the anthropogenic impact on the coastal zones and the environmental issues threatening the coastal system and the marine environment.
  • The students will study the importance of sustainability and integrated coastal zone management (ICZM) with special emphasis on Turkey’s coastal areas.
  • Students will learn what integrated coastal zone management (ICZM) is and the importance of civil engineer’s responsibility with regard to coastal areas and his/her role in ICZM.
Course Content Definition of coastal zone and its physical and ecological properties, coastal landforms, the global ocean and the climate system, coastal processes, coastal structures, pressures on the coast, coastal pollution, sustainability, integrated coastal zone management (ICZM) and ICZM in Turkey.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Definition of coastal zone and coastal landforms - Coastal landform environments; cliffs; beaches; coastal dunes
2 Coastal Landforms – Deltas and estuaries;Lagoons; Salt marshes and reefs; human impacts on coastal landforms
3 Coastal Processes – Waves and tides
4 Coastal processes – Currents; effects of coastal processes on the coastal areas
5 Coastal Structures – Coastal defence structures; berthing structures
6 The Global Ocean and climate – Ocean floor; ocean water and ocean life
7 Climate change and sea level rise – The climate system; human impact on global climate; global warming; sea level rise
8 Pressures on the coast and coastal pollution – Hydrologic cycle; Running water and groundwater; water quality; marine litter
9 Sustainable Development of coastal areas
10 Integrated coastal zone management (ICZM) -Definition and History
11 Integrated coastal zone management (ICZM) -Capacity Building and Tools
12 Integrated coastal zone management (ICZM) -Today and future; Case studies
13 Coastal Areas of Turkey
14 Integrated coastal zone management (ICZM) Plans In Turkey
15 Final Exam Period
16 Final Exam Period

Sources

Other Sources 1. Kamphuis, J.W., Introduction to Coastal Engineering and Management, Advanced Series on Ocean Engineering, Vol.30, 2nd Edition, World Scientific Press, 2010.
2. Tarbuck, E.J. and Lutgens, F.K., Earth Science, Prentice Hall, 2003
3. French, P.W., Coastal Defences, Routledge, Taylor & Francis Group, 2001.
4. Carter, R.W.G., Coastal Environments, Academic Press, 1988.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project 1 15
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 50
Final Exam/Final Jury 1 35
Toplam 4 100
Percentage of Semester Work 65
Percentage of Final Work 35
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gains the ability to have in-depth knowledge of mathematics, science, and engineering, and to use this knowledge in solving Civil Engineering problems.
2 Gains the ability to design and produce Civil Engineering systems under economic, environmental sustainability, and manufacturability constraints.
3 Gains the ability to identify, define, formulate, and solve complex engineering problems, and acquires the ability to select and apply appropriate analysis and modeling methods for this purpose.
4 Gains the ability to develop an approach to solve encountered engineering problems, and to design and conduct models and experiments. X
5 Gains the ability to effectively use modern engineering tools, techniques, and capabilities necessary for design and other engineering applications.
6 Gains the ability to independently conduct fundamental research in the field, report research results effectively, and present them at scientific meetings.
7 Acquires sufficient verbal and written English skills to follow scientific developments in the field and to communicate with colleagues.
8 Gains the ability to effectively use the knowledge acquired in intra-disciplinary and interdisciplinary teams, and to take leadership roles in such teams.
9 Gains awareness of the necessity of lifelong learning, personal development, and continuous self-renewal in the field; follows developments in science and technology; acquires awareness of entrepreneurship and innovation.
10 Recognizes the importance of considering social, scientific, and ethical values in the stages of collecting, interpreting, disseminating, and applying data related to civil engineering problems.
11 Gains the competence to critically examine, develop, and, when necessary, take action to change social relations and the norms that govern them.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 3 42
Presentation/Seminar Prepration
Project 1 12 12
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 15 30
Prepration of Final Exams/Final Jury 1 18 18
Total Workload 150