ECTS - Advanced Structural Steel Design
Advanced Structural Steel Design (CE410) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Advanced Structural Steel Design | CE410 | Area Elective | 3 | 0 | 0 | 3 | 6 |
Pre-requisite Course(s) |
---|
CE344 |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Natural & Applied Sciences Master's Degree |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Question and Answer, Problem Solving. |
Course Lecturer(s) |
|
Course Objectives | The general objective of this course is to present the advanced topics in structural steel design in detail. These topics include behavior of built-up compression members, analysis and design of composite flexural members, and behavior of various seismic force resisting systems used in structural steel buildings. The students will also be introduced to the Load and Resistance Factor Design (LRFD) methodology through the use of North American design specifications, as well as the Turkish structural steel design standards. Emphasis will be given to the conceptual differences between the Load and Resistance Factor Design and the Allowable Stress Design methodologies. As a part of this course, the students will also be asked to do some computer programming for the solution of homework assignments. The students will also be asked to perform a literature survey on each topic that will be covered in this course, the results of which will be presented to the class in the form of a written report and an oral presentation. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | LRFD design of structural steel members, built-up compression members, composite flexural members, seismic design. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | LRFD Design of Structural Steel Members | |
2 | LRFD Design of Structural Steel Members | |
3 | LRFD Design of Structural Steel Members | |
4 | Built-Up Compression Members | |
5 | Built-Up Compression Members | |
6 | Built-Up Compression Members | |
7 | Composite Flexural Members | |
8 | Composite Flexural Members | |
9 | Composite Flexural Members | |
10 | Seismic Design Concepts | |
11 | Seismic Design Concepts / Seismic Specifications | |
12 | Seismic Specifications | |
13 | Seismic Behavior of Moment-Resisting Frames | |
14 | Seismic Behavior of Braced Frames, Seismic Behavior of Steel Plate Shear Wall Systems | |
15 | Final Exam Period | |
16 | Final Exam Period |
Sources
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 5 | 40 |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 40 |
Final Exam/Final Jury | 1 | 20 |
Toplam | 8 | 100 |
Percentage of Semester Work | 80 |
---|---|
Percentage of Final Work | 20 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Gains the ability to have in-depth knowledge of mathematics, science, and engineering, and to use this knowledge in solving Civil Engineering problems. | X | ||||
2 | Gains the ability to design and produce Civil Engineering systems under economic, environmental sustainability, and manufacturability constraints. | X | ||||
3 | Gains the ability to identify, define, formulate, and solve complex engineering problems, and acquires the ability to select and apply appropriate analysis and modeling methods for this purpose. | |||||
4 | Gains the ability to develop an approach to solve encountered engineering problems, and to design and conduct models and experiments. | |||||
5 | Gains the ability to effectively use modern engineering tools, techniques, and capabilities necessary for design and other engineering applications. | |||||
6 | Gains the ability to independently conduct fundamental research in the field, report research results effectively, and present them at scientific meetings. | |||||
7 | Acquires sufficient verbal and written English skills to follow scientific developments in the field and to communicate with colleagues. | |||||
8 | Gains the ability to effectively use the knowledge acquired in intra-disciplinary and interdisciplinary teams, and to take leadership roles in such teams. | |||||
9 | Gains awareness of the necessity of lifelong learning, personal development, and continuous self-renewal in the field; follows developments in science and technology; acquires awareness of entrepreneurship and innovation. | |||||
10 | Recognizes the importance of considering social, scientific, and ethical values in the stages of collecting, interpreting, disseminating, and applying data related to civil engineering problems. | |||||
11 | Gains the competence to critically examine, develop, and, when necessary, take action to change social relations and the norms that govern them. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 14 | 3 | 42 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | 5 | 4 | 20 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 10 | 20 |
Prepration of Final Exams/Final Jury | 1 | 20 | 20 |
Total Workload | 150 |