ECTS - Irrigation and Drainage
Irrigation and Drainage (CE429) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Irrigation and Drainage | CE429 | Area Elective | 3 | 0 | 0 | 3 | 6 |
Pre-requisite Course(s) |
---|
CE307 |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Natural & Applied Sciences Master's Degree |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Drill and Practice. |
Course Lecturer(s) |
|
Course Objectives | To understand fundamental requirement and needs of Irrigation and drainage systems, and learn how to design irrigation and drainage canals, pipe and subsurface irrigation and drainage systems by using Conservation of Momentum, Energy and Mass principles |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Determination of irrigation module for the irrigation field, determination of irrigation water discharge, uniform flow in open canals, uniform flow in pipeline, open canal design, pipe irrigation system design. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Introduction :Scope of the Course and Review of development of irrigation system in Turkey | Chapter 1 |
2 | Soil and Soil Parameters and soil water:soils under fiels condition, soil parameters, soil water, soil water characteristic curve | Chapter 2, 3 |
3 | Plant Water Requirement: Primary measure of water requirement, evapotranspiration and crop water requirement, rooting water extraction | Chapter 4 |
4 | Evapotranspiration Prediction: Direct measurement methods, and indirect measurement methods based on energy balance approach | Chapter 5 |
5 | Requirement for irrigation: Irrigation efficiencies, and irrigation water quality | Chapter 6 |
6 | Irrigation Systems: Design of classical open channel irrigation systems by using uniform flow approach, and design of canalet irrigation system | Chapter 7.1, 7.2 |
7 | Irrigation systems: Design operation of methods of classical systems, irrigation distribution methods, and irrigation application methods | Chapter 7.3, 7.4, 7.5 |
8 | Closed system Irrigation Methods: Pipe irrigation, Sprinkler irrigation systems, Trickle (drip) Irrigation systems, and subsurface irrigation | Chapter 10.1, 10.2, 10.3, 10.4 |
9 | Drainage of Irrigated Lands: Surface drainage discharge and drainage canal design, Subsurface drainage discharge and subsurface drainage pipe tile design | Chapter 11.1, 11.2 |
Sources
Course Book | 1. Introduction to Irrigation and Drainage Engineering,3. Revised Edition,Darama Y., Ankara, 2009 |
---|---|
Other Sources | 2. Irrigation Principles and Practices, Hansen, V.E., Israelsen O.W., and Stringham G.E. Whiley, 1980, |
3. Irrigation and Drainage, Kızılkaya T., State Hydraulic Publication (in Turkish) Ankara, 1988. | |
4. Applied Water Resources Engineering, 2nd Edition, Yanmaz, M., METU Press. Ankara, 2001 | |
5. Irrigation and Drainage Engineering, Tümer, T., METU Civil Eng., Department Water Resources Laboratory Publication No:8, 1978 |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 6 | 20 |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 40 |
Final Exam/Final Jury | 1 | 40 |
Toplam | 8 | 100 |
Percentage of Semester Work | 60 |
---|---|
Percentage of Final Work | 40 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Gains the ability to have in-depth knowledge of mathematics, science, and engineering, and to use this knowledge in solving Civil Engineering problems. | X | ||||
2 | Gains the ability to design and produce Civil Engineering systems under economic, environmental sustainability, and manufacturability constraints. | X | ||||
3 | Gains the ability to identify, define, formulate, and solve complex engineering problems, and acquires the ability to select and apply appropriate analysis and modeling methods for this purpose. | |||||
4 | Gains the ability to develop an approach to solve encountered engineering problems, and to design and conduct models and experiments. | X | ||||
5 | Gains the ability to effectively use modern engineering tools, techniques, and capabilities necessary for design and other engineering applications. | |||||
6 | Gains the ability to independently conduct fundamental research in the field, report research results effectively, and present them at scientific meetings. | |||||
7 | Acquires sufficient verbal and written English skills to follow scientific developments in the field and to communicate with colleagues. | |||||
8 | Gains the ability to effectively use the knowledge acquired in intra-disciplinary and interdisciplinary teams, and to take leadership roles in such teams. | X | ||||
9 | Gains awareness of the necessity of lifelong learning, personal development, and continuous self-renewal in the field; follows developments in science and technology; acquires awareness of entrepreneurship and innovation. | |||||
10 | Recognizes the importance of considering social, scientific, and ethical values in the stages of collecting, interpreting, disseminating, and applying data related to civil engineering problems. | |||||
11 | Gains the competence to critically examine, develop, and, when necessary, take action to change social relations and the norms that govern them. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 14 | 3 | 42 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | 6 | 5 | 30 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 1 | 10 | 10 |
Prepration of Final Exams/Final Jury | 1 | 20 | 20 |
Total Workload | 150 |