Energy and Environment (ENE404) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Energy and Environment ENE404 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type N/A
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Demonstration, Discussion, Question and Answer, Drill and Practice, Team/Group, Project Design/Management.
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. Gizen Nur Bulanık Durmuş
Course Assistants
Course Objectives The course is a technical elective course for energy systems engineering degree. The main objectives of this course are; to provide basic understanding and appreciation of energy and environmental concepts and interconnectedness; analyze energy consumption patterns; discuss various energy resources that power the modern society; examine the energy conversion processes; explore interrelationships between energy use and industrial progress and environmental consequences; discuss future energy alternatives.
Course Learning Outcomes The students who succeeded in this course;
  • Examining the relationship between energy and global environment
  • Understanding the detrimental effects of producing and using energy on the environment
  • Dealing with the climate change and global warming
  • Understanding the need for the sustainability
Course Content Energy resources, processes, environmental effects, air pollution, sustainability, global warming, climate change.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction Chapter 1
2 The Planet’s Energy Balance Chapter 2
3 History of Humankind’s Use of Energy Chapter 3
4 Energy Resources, Processes and Environmental Effects Chapter 4
5 Economics and the Environment Chapter 5
6 The Promise and Problems of Nuclear Energy Chapter 6
7 Air Pollution Chapter 7
8 Midterm Exam
9 Future World Energy Use and Carbon Emissions Chapter 8
10 Sustainability and Climate Change Chapter 9
11 Carbon Sequestration and Climate Engineering Chapter 10
12 Methodology and Assumptions for a Sustainable Low Carbon Future Chapter 11
13 Kyoto’s Protocol Chapter 12
14 Students’ Presentations
15 Students’ Presentations
16 Final Exam

Sources

Other Sources 1. Energy and the Environment, 2nd Edition by Robert A. Ristinen, Jack P. Kraushaar, 2006, Wiley
2. Energy and Climate Change: Creating a Sustainable Future by David Coley, 2008, Wiley
3. Energy Systems Engineering: Evaluation and Implementation, 1st Edition, Francis Vanek, Cornell University---Ithaca, Louis D. Albright, Cornell University, Ithaca, 2008, Mc-Graw Hill.
4. Environmental Impact Assessment, Larry Canter, 2nd Edition, 1996, Mc-Graw Hill
5. Alternative Energy For Dummies, Rik DeGunther, 2009, Wiley

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 2 25
Presentation - -
Project 1 25
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 50
Final Exam/Final Jury 1 40
Toplam 5 140
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Having accumulated knowledge on mathematics, science and engineering and an ability to apply these knowledge to solve Civil engineering problems.
2 Ability to design Cİvil Engineering systems fulfilling sustainability in environment and manufacturability and economic constraints
3 An ability to differentiate, identify, formulate, and solve complex engineering problems; an ability to select and implement proper analysis, modeling and implementation techniques for the identified engineering problems.
4 An ability to develop a solution based approach and a model for an engineering problem and design and manage an experiment
5 Ability to use modern engineering tools, techniques and facilities in design and other engineering applications
6 Ability to carry out independent research in the field and to report the results of the research effectively and be able to present the research results at scientific meetings.
7 Sufficient oral and written English knowledge to follow scientific conferences in the field and communicate with colleagues.
8 Ability to effectively use knowledge in the field to work in disciplinary/multidisciplinary teams and the skill to lead these teams
9 Consciousness on the necessity of improvement and sustainability as a result of life-long learning,ability for continuous renovation and monitoring the developments on science and technology and awareness on entrepreneurship and innovation
10 Professional and ethical responsibility to gather and interpret data, apply and announce solutions to Civil Engineering problems.
11 An ability to investigate, improve social connections and their conducting norms with a critical view and act to change them when necessary.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 2 28
Presentation/Seminar Prepration
Project 1 20 20
Report
Homework Assignments 3 3 9
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 10 10
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 125