Energy and Environment (ENE404) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Energy and Environment ENE404 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Demonstration, Discussion, Question and Answer, Drill and Practice, Team/Group, Project Design/Management.
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. Gizen Nur Bulanık Durmuş
Course Assistants
Course Objectives The course is a technical elective course for energy systems engineering degree. The main objectives of this course are; to provide basic understanding and appreciation of energy and environmental concepts and interconnectedness; analyze energy consumption patterns; discuss various energy resources that power the modern society; examine the energy conversion processes; explore interrelationships between energy use and industrial progress and environmental consequences; discuss future energy alternatives.
Course Learning Outcomes The students who succeeded in this course;
  • Examining the relationship between energy and global environment
  • Understanding the detrimental effects of producing and using energy on the environment
  • Dealing with the climate change and global warming
  • Understanding the need for the sustainability
Course Content Energy resources, processes, environmental effects, air pollution, sustainability, global warming, climate change.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction Chapter 1
2 The Planet’s Energy Balance Chapter 2
3 History of Humankind’s Use of Energy Chapter 3
4 Energy Resources, Processes and Environmental Effects Chapter 4
5 Economics and the Environment Chapter 5
6 The Promise and Problems of Nuclear Energy Chapter 6
7 Air Pollution Chapter 7
8 Midterm Exam
9 Future World Energy Use and Carbon Emissions Chapter 8
10 Sustainability and Climate Change Chapter 9
11 Carbon Sequestration and Climate Engineering Chapter 10
12 Methodology and Assumptions for a Sustainable Low Carbon Future Chapter 11
13 Kyoto’s Protocol Chapter 12
14 Students’ Presentations
15 Students’ Presentations
16 Final Exam

Sources

Other Sources 1. Energy and the Environment, 2nd Edition by Robert A. Ristinen, Jack P. Kraushaar, 2006, Wiley
2. Energy and Climate Change: Creating a Sustainable Future by David Coley, 2008, Wiley
3. Energy Systems Engineering: Evaluation and Implementation, 1st Edition, Francis Vanek, Cornell University---Ithaca, Louis D. Albright, Cornell University, Ithaca, 2008, Mc-Graw Hill.
4. Environmental Impact Assessment, Larry Canter, 2nd Edition, 1996, Mc-Graw Hill
5. Alternative Energy For Dummies, Rik DeGunther, 2009, Wiley

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 2 25
Presentation - -
Project 1 25
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 50
Final Exam/Final Jury 1 40
Toplam 5 140
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gains the ability to have in-depth knowledge of mathematics, science, and engineering, and to use this knowledge in solving Civil Engineering problems. X
2 Gains the ability to design and produce Civil Engineering systems under economic, environmental sustainability, and manufacturability constraints.
3 Gains the ability to identify, define, formulate, and solve complex engineering problems, and acquires the ability to select and apply appropriate analysis and modeling methods for this purpose. X
4 Gains the ability to develop an approach to solve encountered engineering problems, and to design and conduct models and experiments.
5 Gains the ability to effectively use modern engineering tools, techniques, and capabilities necessary for design and other engineering applications. X
6 Gains the ability to independently conduct fundamental research in the field, report research results effectively, and present them at scientific meetings.
7 Acquires sufficient verbal and written English skills to follow scientific developments in the field and to communicate with colleagues. X
8 Gains the ability to effectively use the knowledge acquired in intra-disciplinary and interdisciplinary teams, and to take leadership roles in such teams. X
9 Gains awareness of the necessity of lifelong learning, personal development, and continuous self-renewal in the field; follows developments in science and technology; acquires awareness of entrepreneurship and innovation.
10 Recognizes the importance of considering social, scientific, and ethical values in the stages of collecting, interpreting, disseminating, and applying data related to civil engineering problems. X
11 Gains the competence to critically examine, develop, and, when necessary, take action to change social relations and the norms that govern them.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 2 28
Presentation/Seminar Prepration
Project 1 20 20
Report
Homework Assignments 3 3 9
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 10 10
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 125