# Fundamentals of Electronic Components (CMPE134) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Fundamentals of Electronic Components CMPE134 3 2 0 4 3.5
Pre-requisite Course(s)
N/A
Course Language English N/A Bachelor’s Degree (First Cycle) Face To Face Lecture, Drill and Practice. The objective of the course is to teach; Basics of electronic circuit analysis, fundamentals of electronic circuit design (combinational and sequential) and electronic circuit components. Principles in semiconductor based electronic components and transistor-transistor logic (TTL). The students who succeeded in this course; Discuss and interpret the basic concepts in electronic circuit analyses. Recall basic analyze and design principles of electronic circuit components. Describe electronic logical calculation technologies and methods Elaborate transistor-transistor logic running fundamentals. Engineering abstraction in simple circuit analysis and models to represent actual circuit components; analysis of electronic circuits; the linearity and superposition theory; Thevenin and Norton equity principles in multi-component circuit analysis; first order RC and RL circuits, digital electronic components, fundamentals of logical calculations

### Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction, Systems of Units, Charge, Current and Voltage Introduction + Chapter 1(main text)
2 Ohm's Law, Nodes, Branches and Loops, Kirchhoff's Current Law (KCL), Chapter 2
3 Kirchhoff's Voltage Law (KVL), Series Resistors and Voltage Division, Parallel Resistors and Current Division, Short Circuit and Open Circuit Chapter 2
4 Nodal Analysis, Nodal Analysis with Voltage, Sources, Mesh Analysis, Mesh Analysis with Current Sources Chapter 3
5 Linearity Property, Superposition, Source Transformation Chapter 3
6 Thevenin’s Theorem, Norton’s Theorem Chapter 3
7 Semiconductors, Diodes, PN junctions Chapter 16
8 BJT switching characteristics Chapter 6
9 First order RL and RC circuits Chapter 10
10 Digital Integrated Circuits Chapter 10
11 DTL, TTL, ECL, and fan in/out, propagation delay Chapter 10
12 CMOS circuits Chapter 11
13 Digital Logic Structures, Digital versus analog logic, Logic Gates And Truth Tables, State Diagrams Chapter 5
14 Boolean Algebra and DeMorgan's Theorems, Finding Expression From Truth Table, Digital Circuit Realization Chapter 5

### Sources

Course Book 1. Agarwal, Anant, and Jeffrey H. Lang. Foundations of Analog and Digital Electronic Circuits. San Mateo, CA: Morgan Kaufmann Publishers, Elsevier, July 2005. ISBN: 9781558607354. 2. Electric Circuits, J.W.Nilsson and R.A.Riedel, Addison Wesley Pub 3. Fundamentals of Electric Circuit Analysis, Clayton Paul, John Wiley & Sons 4. Introductory Circuits for Electrical and Computer Eng., J. W. Nilsson, S. A. Riedel, Prentice Hall

### Evaluation System

Attendance/Participation - -
Laboratory 1 10
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics 3 10
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 40
Final Exam/Final Jury 1 40
Toplam 7 100
 Percentage of Semester Work 60 40 100

### Course Category

Core Courses X

### The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge in mathematics, science and subjects specific to the computer engineering discipline; the ability to apply theoretical and practical knowledge of these areas to complex engineering problems. X
2 The ability to identify, define, formulate and solve complex engineering problems; selecting and applying proper analysis and modeling techniques for this purpose. X
3 The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. X
4 The ability to develop, select and utilize modern techniques and tools essential for the analysis and determination of complex problems in computer engineering applications; the ability to utilize information technologies effectively. X
5 The ability to design experiments, conduct experiments, gather data, analyze and interpret results for the investigation of complex engineering problems or research topics specific to the computer engineering discipline. X
6 The ability to work effectively in inter/inner disciplinary teams; ability to work individually
7 Effective oral and writen communication skills in Turkish; the ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and to receive clear and understandable instructions. X
8 The knowledge of at least one foreign language; the ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and to receive clear and understandable instructions.
9 Recognition of the need for lifelong learning; the ability to access information, to follow recent developments in science and technology.
10 The ability to behave according to ethical principles, awareness of professional and ethical responsibility;
11 Knowledge of the standards utilized in software engineering applications
12 Knowledge on business practices such as project management, risk management and change management;
14 Knowledge on sustainable development
15 Knowledge on the effects of computer engineering applications on the universal and social dimensions of health, environment and safety;
16 Awareness of the legal consequences of engineering solutions
17 An ability to describe, analyze and design digital computing and representation systems. X
18 An ability to use appropriate computer engineering concepts and programming languages in solving computing problems. X

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 14 3 42
Laboratory 12 2 24
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 1 14
Presentation/Seminar Prepration
Project
Report
Homework Assignments
Quizzes/Studio Critics 3 1 3
Prepration of Midterm Exams/Midterm Jury 2 2 4
Prepration of Final Exams/Final Jury 1 5 5