Software Architecture (SE322) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Software Architecture SE322 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The objective of this course is to provide an overview of software design architecture, application, languages for software and critical systems.
Course Learning Outcomes The students who succeeded in this course;
  • Explain basics of architecture, application, and languages for software and critical systems
  • Apply different software techniques and documentation
  • Analyze various real life software architecture construction, success and pitfalls
Course Content Introduction to software architecture, architecture business cycle, creating an architecture, introducing a case study, understanding and achieving quality, design, document and reconstruct software architecture, methods in architecture evaluation, quantitative approach to architecture design decision making, software product lines, types of

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Understanding Software Architecture Chapter 1 (main text)
2 Introducing Case Study Chapter 2
3 Software Quality Attributes Chapter 3
4 Middleware Architectures and Technology Chapter 4
5 Software Architecture Process Chapter 5
6 Documenting a Software Architecture Chapter 6
7 Case Study Design Chapter 7
8 Software Product Lines Chapter 9
9 Aspect Oriented Architectures Chapter 10
10 Model-Driven Architecture Chapter 11
11 Service Oriented Architecture & Technologies Chapter 12
12 Semantics Web Chapter 13
13 Software Agents Chapter 43
14 Final Examination Period Review of topics
15 Final Examination Period Review of topics

Sources

Course Book 1. Essential Software Architecture by Ian Gorton, Springer, 2006
Other Sources 2. Software Architecture in Practice, Second Edition, by Bass, Clements and Kazman, Addison-Wesley Publishers, ISBN: 0-321-15495-9, 2007
3. Quality Software Project Management by Robert T. Futrell, Donald F. Shafer, and Linda I. Shafer, Prentice Hall, 2002
4. Evaluating Software Architecture- Methods and Case Studies, by Paul Clements, Rick Kazman, Mark Klein, ISBN: 020170482X, Addison Wesley, 2007
5. Software System Architecture by Nick Rozanski and Eoin Woods, ISBN 0-321-11229-6, Addison Wesley, 2007
6. Software Product Line in Action Frank Van der Linden, Klaus Schmid, Eelco Rommes, ISBN 978-3-540-71436-1 Springer Berlin Heidelberg New York, 2007

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 5
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project 1 20
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 20
Final Exam/Final Jury 1 40
Toplam 4 85
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Has adequate knowledge in mathematics, science, and computer engineering-specific subjects; uses theoretical and practical knowledge in these areas to solve complex engineering problems. X
2 Identifies, defines, formulates, and solves complex engineering problems; selects and applies appropriate analysis and modeling methods for this purpose. X
3 Designs a complex system, process, device, or product to meet specific requirements under realistic constraints and conditions; applies modern design methods for this purpose. X
4 Develops, selects, and uses modern techniques and tools necessary for the analysis and solution of complex problems encountered in computer engineering applications; uses information technologies effectively. X
5 Designs experiments, conducts experiments, collects data, analyzes and interprets results for the investigation of complex engineering problems or research topics specific to the discipline of computer engineering.
6 Works effectively in disciplinary and multidisciplinary teams; gains the ability to work individually. X
7 Communicates effectively in Turkish, both orally and in writing; writes effective reports and understands written reports, prepares design and production reports, makes effective presentations, gives and receives clear and understandable instructions.
8 Knows at least one foreign language; writes effective reports and understands written reports, prepares design and production reports, makes effective presentations, gives and receives clear and understandable instructions.
9 Has awareness of the necessity of lifelong learning; accesses information, follows developments in science and technology, and continuously improves oneself. X
10 Acts in accordance with ethical principles and has awareness of professional and ethical responsibility. X
11 Has knowledge about the standards used in computer engineering applications.
12 Has knowledge about workplace practices such as project management, risk management, and change management. X
13 Gains awareness about entrepreneurship and innovation.
14 Has knowledge about sustainable development.
15 Has knowledge about the health, environmental, and safety impacts of computer engineering applications in universal and societal dimensions and the contemporary issues reflected in the field of engineering. X
16 Gains awareness of the legal consequences of engineering solutions.
17 Analyzes, designs, and expresses numerical computation and digital representation systems. X
18 Uses programming languages and appropriate computer engineering concepts to solve computational problems. X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration
Project 1 10 10
Report
Homework Assignments 2 5 10
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 10 10
Prepration of Final Exams/Final Jury 1 20 20
Total Workload 130