ECTS - Information Systems Development

Information Systems Development (ISE353) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Information Systems Development ISE353 Area Elective 3 0 0 3 10
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The objective of this course is to familiarize the students with information system development methodologies and its components.
Course Learning Outcomes The students who succeeded in this course;
  • Discuss various information system development approaches
  • Review data modeling paradigms
  • Discuss system design and development methodologies
Course Content Information systems, strategy and information systems, business information technology, distributed systems, internet and www, e-commerce and business, business intelligence, file organizations and databases, process analysis and modeling, data analysis, systems design, detailed design and implementation, object-oriented approaches, systems

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to Information systems, Information systems and Organization Chapter 1, 2 (main text)
2 Business information technology, Distributed systems, networks, Internet and the organization Chapter 3,4,5
3 Electronic commerce and business Business intelligence Chapter 6,7
4 File organization and databases for business information systems, Information systems: control and responsibility Chapter 8,9
5 Information systems development Chapter 10,11
6 Information systems development Chapter 10,11
7 Process analysis and modeling Chapter 12
8 Process analysis and modeling Chapter 12
9 Data analysis and modeling Chapter 13
10 Systems design, Detailed design, implementation and review Chapter 14,15
11 Systems design, Detailed design, implementation and review Chapter 14,15
12 Systems development tools, techniques and alternative approaches Chapter 16
13 Systems development tools, techniques and alternative approaches Chapter 16
14 Expert systems and knowledge bases Chapter 17
15 Final Examination Period Review of topics
16 Final Examination Period Review of topics

Sources

Course Book 1. Graham Curtis, David Cobham, “Business Information Systems: Analysis, Design and Practice”, 6/E, Financial Times Press, 2008.
Other Sources 2. David Avison, Guy Fitzgerald, “Information Systems Development: Methodologies, Techniques and Tools”, McGraw-Hill Higher Education; 4 edition,2006.
3. Papadopoulos, G.A.; Wojtkowski, W.; Wojtkowski, G.; Wrycza, S.; Zupancic, J., “Information Systems Development, Towards a Service Provision Society”, Springer, 2009, 1st edition.
4. Nancy Russo, Brian Fitzgerald, Eric Stolterman, “Information “Systems Development: Methods-in-Action”, McGraw-Hill, 2002,1st edition.
5. Nilsson, A.G.; Gustas, R.; Wojtkowski, W.G.; Wojtkowski, W.; Wrycza, S.; Zupancic, ”Advances in Information Systems Development:Bridging the Gap between Academia & Industry”, 2006.
6. http://www.pdf-search-engine.com/information-systems-developmentmethodologies-pdf.html

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 3 15
Presentation - -
Project 1 25
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 25
Final Exam/Final Jury 1 35
Toplam 6 100
Percentage of Semester Work 65
Percentage of Final Work 35
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Has adequate knowledge in mathematics, science, and computer engineering-specific subjects; uses theoretical and practical knowledge in these areas to solve complex engineering problems.
2 Identifies, defines, formulates, and solves complex engineering problems; selects and applies appropriate analysis and modeling methods for this purpose. X
3 Designs a complex system, process, device, or product to meet specific requirements under realistic constraints and conditions; applies modern design methods for this purpose. X
4 Develops, selects, and uses modern techniques and tools necessary for the analysis and solution of complex problems encountered in computer engineering applications; uses information technologies effectively.
5 Designs experiments, conducts experiments, collects data, analyzes and interprets results for the investigation of complex engineering problems or research topics specific to the discipline of computer engineering.
6 Works effectively in disciplinary and multidisciplinary teams; gains the ability to work individually.
7 Communicates effectively in Turkish, both orally and in writing; writes effective reports and understands written reports, prepares design and production reports, makes effective presentations, gives and receives clear and understandable instructions.
8 Knows at least one foreign language; writes effective reports and understands written reports, prepares design and production reports, makes effective presentations, gives and receives clear and understandable instructions.
9 Has awareness of the necessity of lifelong learning; accesses information, follows developments in science and technology, and continuously improves oneself.
10 Acts in accordance with ethical principles and has awareness of professional and ethical responsibility.
11 Has knowledge about the standards used in computer engineering applications.
12 Has knowledge about workplace practices such as project management, risk management, and change management.
13 Gains awareness about entrepreneurship and innovation.
14 Has knowledge about sustainable development.
15 Has knowledge about the health, environmental, and safety impacts of computer engineering applications in universal and societal dimensions and the contemporary issues reflected in the field of engineering.
16 Gains awareness of the legal consequences of engineering solutions.
17 Analyzes, designs, and expresses numerical computation and digital representation systems. X
18 Uses programming languages and appropriate computer engineering concepts to solve computational problems. X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours)
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 3 48
Presentation/Seminar Prepration
Project 1 10 10
Report
Homework Assignments 3 4 12
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 15 15
Prepration of Final Exams/Final Jury 1 20 20
Total Workload 105