ECTS - Industrial Engineering Practices in Energy Sector

Industrial Engineering Practices in Energy Sector (IE322) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Industrial Engineering Practices in Energy Sector IE322 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Team/Group.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives This course is designed to acquaint the students about the critical role of the engineering discipline in the resource management and utilization branches of energy sector as well as the environment impacts of it. Students are organized to work in multidisciplinary teams to gain a broad experience on multidisciplinary engineering design process
Course Learning Outcomes The students who succeeded in this course;
  • Students will acquire broad knowledge about modern energy systems
  • Student will have a good command of energy related global problems and renewable green energy solutions
  • Students from different disciplines will be able to work in close collaboration within the field of modern energy systems designs
Course Content The impact of energy in today?s world; principles of energy planning and utilization; the drives of energy supply and demand; the role of an engineer in energy industries for management, resource planning and utilization; sustainability as a driving force for energy planning; common concepts in energy management; a paradigm of decision making: conventional versus new energy resources including nuclear and renewable energy; economical evaluation of energy investments,

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 The impact of energy in today’s world Life and energy. The sun. The impact of energy and management as a tool to control and develop strategies.
2 The principles of energy supply and demand. The driving forces of energy supply and demand. The trends in energy demand.
3 The role of an industrial engineering in energy industries for management, resource planning and utilization. Systems approach as a valuable tool for decision making in the energy sector.
4 Sustainability as a driving force for energy planning. The theory of sustainability and sustainable resource management.
5 Midterm exam
6 Common concepts in energy management. Energy security, environmental issues, cogeneration, efficiency in energy utilization, carbon trading, sustainable energy.
7 A paradigm of decision making. The conventional vs new energy resources including nuclear and renewable energy.
8 The details of an energy system I
9 The details of an energy system II
10 The details of an energy system III
11 Economical evaluation of energy investments. Various appraisal means, levellized cost of electricity, numerical analysis.
12 Decision support systems in the resource management, planning and utilization of energy resources.
13 Defining the correct tools for an efficient energy planning and utilization through the point of view of an industrial engineering.
14 Energy production and environment. The concept of emission management. Evaluating alternative sources for a multi criteria decision making: Resource planning and environmental hazards.
15 Energy in Turkey – A strategic management approach The relation of GDP and energy consumption in Turkey. Trends in supply and demand. Excessive dependence on energy imports. Energy sources in Turkey. The potential of renewable energy and energy efficiency. Long term energy planning for a distinctive strategic management.
16 General discussion

Sources

Course Book 1. Richard A. Dunlap, Renewable Energy, UMorgan & Claypool Publishers, 2020
2. David JC MacKay, Sustainable Energy - without the hot air, UIT Cambridge, 2009
Other Sources 3. Robert L. Evans, Fueling Our Future - An Introduction to Sustainable Energy, Cambridge University Press, 2007
4. Eduardo Rincón-Mejía, Alejandro de las Heras – Sustainable Energy Technologies – CRC Press, 2018

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project 1 30
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 30
Final Exam/Final Jury 1 30
Toplam 3 90
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Has adequate knowledge in mathematics, science, and computer engineering-specific subjects; uses theoretical and practical knowledge in these areas to solve complex engineering problems.
2 Identifies, defines, formulates, and solves complex engineering problems; selects and applies appropriate analysis and modeling methods for this purpose.
3 Designs a complex system, process, device, or product to meet specific requirements under realistic constraints and conditions; applies modern design methods for this purpose.
4 Develops, selects, and uses modern techniques and tools necessary for the analysis and solution of complex problems encountered in computer engineering applications; uses information technologies effectively.
5 Designs experiments, conducts experiments, collects data, analyzes and interprets results for the investigation of complex engineering problems or research topics specific to the discipline of computer engineering.
6 Works effectively in disciplinary and multidisciplinary teams; gains the ability to work individually.
7 Communicates effectively in Turkish, both orally and in writing; writes effective reports and understands written reports, prepares design and production reports, makes effective presentations, gives and receives clear and understandable instructions.
8 Knows at least one foreign language; writes effective reports and understands written reports, prepares design and production reports, makes effective presentations, gives and receives clear and understandable instructions.
9 Has awareness of the necessity of lifelong learning; accesses information, follows developments in science and technology, and continuously improves oneself.
10 Acts in accordance with ethical principles and has awareness of professional and ethical responsibility.
11 Has knowledge about the standards used in computer engineering applications.
12 Has knowledge about workplace practices such as project management, risk management, and change management.
13 Gains awareness about entrepreneurship and innovation.
14 Has knowledge about sustainable development. X
15 Has knowledge about the health, environmental, and safety impacts of computer engineering applications in universal and societal dimensions and the contemporary issues reflected in the field of engineering.
16 Gains awareness of the legal consequences of engineering solutions.
17 Analyzes, designs, and expresses numerical computation and digital representation systems.
18 Uses programming languages and appropriate computer engineering concepts to solve computational problems.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration
Project 1 25 25
Report
Homework Assignments
Quizzes/Studio Critics 3 3 9
Prepration of Midterm Exams/Midterm Jury 1 5 5
Prepration of Final Exams/Final Jury 1 6 6
Total Workload 125