ECTS - Special Topics in Computer Networks

Special Topics in Computer Networks (CMPE435) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Special Topics in Computer Networks CMPE435 3 0 0 3 5
Pre-requisite Course(s)
Course Language English
Course Type N/A
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies .
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The objective of the course is to teach elaborate principles and implementation details of TCP/IP networks, with a focus on today’s Internet applications.
Course Learning Outcomes The students who succeeded in this course;
  • Discuss and interpret the basic concepts of data communication principles and TCP/IP protocol suit.
  • Describe detailed technical service configuration parameters and implementation details of well-known Internet applications.
  • Describe OSI layered architecture for computer networks. Identify the functions of TCP/IP and the matching with OSI layers
  • Recall principles of routing mechanisms in TCP/IP networks and routing protocols.
  • Describe the functionalities and usage of IPv6 addressing scheme.
  • Review security requirements of computer networks.
Course Content Elaborate concepts of TCP/IP computer networks; application details for well-known applications on the Internet. IPv6 addresses; routing principles and routing algorithms; ICMP communication; VPNs; wireless-networking; network security.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Brief history and introduction to computer Networks. What is the Internet? ISO layered structure for network services. Introduction + Chapter 1(main text)
2 Review of TCP/IP networks and basic functions on the different layers. Segment, datagram, frame structures. Lecture notes + Selected topics in Chapter 2-5
3 HTTP protocol overview and message format. Cookies, Proxies, cache-control, conditional GET, content encoding. Chapter 2.2.4-2.2.6
4 HTTP services for applications. HTTPS services. FTP overview. E-mail protocols, SMTP and POP3 overview. Mail message formats and MIME Chapter 2.3, 2.4.3-2.4.4
5 DNS architecture and protocol overview. Reverse DNS lookup and DNS poisoning. Characteristics of peer-to-peer applications. P2P file distribution. Distributed Hash Tables (DHT) Chapter 2.5-2.6
6 Overview of transport layer principles and services (UDP/TCP). Connectionless & Connection-oriented transports. Reliability in TCP. Chapter 3.1-3.4
7 TCP flow control, congestion control. ATM ABR congestion control. Chapter 3.5.4-3.7
8 Overview of datagram networks, routing and forwarding. Forwarding by IP addresses and IP address management, subnets and subnet masks. Routing algorithms, Link-state, Distance-Vector routing algorithms. Chapter 4.1-4.5
9 Hierarchical routing. Intra-AS routing: RIP, OSPF. Inter-AS routing: BGP. Broadcast & multicast routing. Chapter 4.5-4.7
10 IPv6 specifications, services, datagram format. IPv4 –IPv6 transition and compatibility. Chapter 4.4.4 + Lecture notes
11 ICMP specifications and implementations. VPN establishment and management. Chapter4.4.3-4.4.5+Lecture notes
12 Overview of link layer principles and the Ethernet protocol. ARP protocol , HUBs and switches. Error detection and correction techniques. VLAN establishment and management. Point-to-point link layer communication and frame structure. Link virtualization. Physical layer overview. Chapter 5.6.3-5.7
13 Overview of wireless network principles and standards (WiFi, Bluetooth, WiMAX). The IEEE 802.xx standards stack and different wireless services. Mobility in wireless networks and mobility management principles. Cellular internet access. Mobile IP. Chapter 6.4-6.8
14 Security risks in networks. Secure e-mail. SSL and transport layer security. IPsec and VPNs. Wireless security. Operational security firewalls and intrusion detection systems. Chapter 8


Course Book 1. Computer Networking: A Top-Down Approach Featuring the Internet, 5/E, James F. Kurose, Keith W. Ross, Addison-Wesley, 2010, ISBN: 978-0-13-136548-3.
Other Sources 2. Computer Networks 4/E, Andrew S. Tanenbaum, Pearson Education Inc., 2006
3. Introduction to Data Networks, Lawrence Harte, ALTHOS Publishing, 2005
4. Computer Networking First-Step, Wendell Odom, Cisco Press, 2004
5. Bilgisayar Ağları, Nazife Baykal, Sas Bilişim, 2005
6. TCP/IP Tutorial and Technical Overview, On-line book available at “” Redbooks, published 19 December 2006, Last accessed May 14, 2009

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics 3 20
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 40
Final Exam/Final Jury 1 40
Toplam 5 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge in mathematics, science and subjects specific to the computer engineering discipline; the ability to apply theoretical and practical knowledge of these areas to complex engineering problems. X
2 The ability to identify, define, formulate and solve complex engineering problems; selecting and applying proper analysis and modeling techniques for this purpose. X
3 The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. X
4 The ability to develop, select and utilize modern techniques and tools essential for the analysis and determination of complex problems in computer engineering applications; the ability to utilize information technologies effectively. X
5 The ability to design experiments, conduct experiments, gather data, analyze and interpret results for the investigation of complex engineering problems or research topics specific to the computer engineering discipline. X
6 The ability to work effectively in inter/inner disciplinary teams; ability to work individually
7 Effective oral and writen communication skills in Turkish; the ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and to receive clear and understandable instructions. X
8 The knowledge of at least one foreign language; the ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and to receive clear and understandable instructions.
9 Recognition of the need for lifelong learning; the ability to access information, to follow recent developments in science and technology. X
10 The ability to behave according to ethical principles, awareness of professional and ethical responsibility; X
11 Knowledge of the standards utilized in software engineering applications
12 Knowledge on business practices such as project management, risk management and change management; X
13 Awareness about entrepreneurship, innovation
14 Knowledge on sustainable development
15 Knowledge on the effects of computer engineering applications on the universal and social dimensions of health, environment and safety; X
16 Awareness of the legal consequences of engineering solutions
17 An ability to describe, analyze and design digital computing and representation systems. X
18 An ability to use appropriate computer engineering concepts and programming languages in solving computing problems.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration
Homework Assignments
Quizzes/Studio Critics 3 5 15
Prepration of Midterm Exams/Midterm Jury 1 15 15
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 125