VLSI Design (CMPE437) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
VLSI Design CMPE437 Area Elective 2 2 0 3 5
Pre-requisite Course(s)
EE203
Course Language English
Course Type Technical Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The objective of this course is to teach the VLSI design techniques, and CMOS technology. In this course, structured design, design rules and layout procedures, using CAD tools for VLSI design (layout, design rule checking, logic and circuit simulation), and some design issues like power, reliability, speed, and economics will be discussed.
Course Learning Outcomes The students who succeeded in this course;
  • Design combinational, sequential, and arithmetic circuits using CMOS transistors
  • Design both static and dynamic CMOS circuits
  • Review the performance metrics of CMOS circuits, evaluate and optimize the designed circuits
  • Perform transistor-level (SPICE) simulation to verify and evaluate the designed circuits
  • Perform layout design for CMOS circuits
  • Explain modern IC Layout design techniques, including Design Rule Check (DRC), Electrical Rule Check (ERC), Layout Versus Schematic (LVS), and layout parasitic extraction
  • Discuss the challenges in high-speed digital VLSI design and describe the common techniques to improve circuit clock frequency and avoid timing violation problems
  • Recognize the circuit structures of static and dynamic random access memories
  • Explain basic I/O buffers and ESD circuits
  • Discuss the challenges and circuit techniques in high-speed interconnect design
Course Content Basic fabrication sequence of ICs, self aligned silicon gate, NMOS and CMOS technologies; design rules and layout; memories and registers; full custom and semi-custom ICs; standard cells, gate arrays, FPGAs and PLDs. CAD tools for design of ICs; high level design of ICs using VHDL; low power IC design.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to IC Technology Chapter 1 (main text)
2 Basic Electrical Properties of MOS and BiCMOS Circuits Chapter 2
3 VLSI Design Flow, MOS Layers, Stick Diagrams Chapter 3
4 VLSI Design Flow, MOS Layers, Design Rules and Layout Chapter 3
5 Logic Gates and Other complex gates Chapter 4
6 Logic Gates and Other complex gates Chapter 4
7 Subsystem Design, Shifters, Adders, ALUs, Multipliers Chapter 5
8 Parity generators, Comparators, Zero/One Detectors, Counters, High Density Memory Elements Chapter 5
9 Semiconductor Integrated Circuit Design : PLAs, FPGAs, CPLDs Chapter 6
10 Standard Cells, Programmable Array Logic, Design Approach. Chapter 6
11 VHDL Synthesis, Circuit Design Flow, Circuit Synthesis, Simulation Chapter 7
12 Layout, Design capture tools, Design Verification Tools, Test Principles Chapter 7
13 CMOS Testing, Need for testing, Test Principles, Design Strategies for test Chapter 8
14 Chip level Test Techniques, System-level Test Techniques, Layout Design for improved Testability Chapter 8

Sources

Course Book 1. Essential VLSI Circuits and Systems, Pucknell, D.A. & Eshraghian, S., Prentice Hall, 2005.
Other Sources 2. 1. Digital Integrated Circuits: A Design Perspective, Jan M. Rabaey, Prentice Hall, 1st edition, 1995
3. 2. CMOS Digital Integrated Circuits: Analysis and Design, S.-M. Kang and Y. Leblebici, McGraw-Hill, 2003
4. 3. Principles of CMOS VLSI Design. A Systems Perspective with VERILOG, N.H.Weste, K. Eshraghian., Addison-Wesley, 2002
5. 4. Modern VSLI Design a System Approach, W. Wolf, Prentice-Hall, 3 edition, 2002
6. 5. Introductory VHDL, By Yalamanchili, Prentice Hall, 2000

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 5
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 2 20
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 40
Final Exam/Final Jury 1 35
Toplam 6 100
Percentage of Semester Work 65
Percentage of Final Work 35
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Has adequate knowledge in mathematics, science, and computer engineering-specific subjects; uses theoretical and practical knowledge in these areas to solve complex engineering problems. X
2 Identifies, defines, formulates, and solves complex engineering problems; selects and applies appropriate analysis and modeling methods for this purpose. X
3 Designs a complex system, process, device, or product to meet specific requirements under realistic constraints and conditions; applies modern design methods for this purpose. X
4 Develops, selects, and uses modern techniques and tools necessary for the analysis and solution of complex problems encountered in computer engineering applications; uses information technologies effectively. X
5 Designs experiments, conducts experiments, collects data, analyzes and interprets results for the investigation of complex engineering problems or research topics specific to the discipline of computer engineering.
6 Works effectively in disciplinary and multidisciplinary teams; gains the ability to work individually.
7 Communicates effectively in Turkish, both orally and in writing; writes effective reports and understands written reports, prepares design and production reports, makes effective presentations, gives and receives clear and understandable instructions.
8 Knows at least one foreign language; writes effective reports and understands written reports, prepares design and production reports, makes effective presentations, gives and receives clear and understandable instructions.
9 Has awareness of the necessity of lifelong learning; accesses information, follows developments in science and technology, and continuously improves oneself. X
10 Acts in accordance with ethical principles and has awareness of professional and ethical responsibility.
11 Has knowledge about the standards used in computer engineering applications.
12 Has knowledge about workplace practices such as project management, risk management, and change management.
13 Gains awareness about entrepreneurship and innovation.
14 Has knowledge about sustainable development.
15 Has knowledge about the health, environmental, and safety impacts of computer engineering applications in universal and societal dimensions and the contemporary issues reflected in the field of engineering.
16 Gains awareness of the legal consequences of engineering solutions.
17 Analyzes, designs, and expresses numerical computation and digital representation systems.
18 Uses programming languages and appropriate computer engineering concepts to solve computational problems.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 4 64
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 1 16
Presentation/Seminar Prepration
Project
Report
Homework Assignments 2 5 10
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 10 20
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 125