ECTS - VLSI Design
VLSI Design (CMPE437) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
VLSI Design | CMPE437 | Area Elective | 2 | 2 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
EE203 |
Course Language | English |
---|---|
Course Type | Technical Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture. |
Course Lecturer(s) |
|
Course Objectives | The objective of this course is to teach the VLSI design techniques, and CMOS technology. In this course, structured design, design rules and layout procedures, using CAD tools for VLSI design (layout, design rule checking, logic and circuit simulation), and some design issues like power, reliability, speed, and economics will be discussed. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Basic fabrication sequence of ICs, self aligned silicon gate, NMOS and CMOS technologies; design rules and layout; memories and registers; full custom and semi-custom ICs; standard cells, gate arrays, FPGAs and PLDs. CAD tools for design of ICs; high level design of ICs using VHDL; low power IC design. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Introduction to IC Technology | Chapter 1 (main text) |
2 | Basic Electrical Properties of MOS and BiCMOS Circuits | Chapter 2 |
3 | VLSI Design Flow, MOS Layers, Stick Diagrams | Chapter 3 |
4 | VLSI Design Flow, MOS Layers, Design Rules and Layout | Chapter 3 |
5 | Logic Gates and Other complex gates | Chapter 4 |
6 | Logic Gates and Other complex gates | Chapter 4 |
7 | Subsystem Design, Shifters, Adders, ALUs, Multipliers | Chapter 5 |
8 | Parity generators, Comparators, Zero/One Detectors, Counters, High Density Memory Elements | Chapter 5 |
9 | Semiconductor Integrated Circuit Design : PLAs, FPGAs, CPLDs | Chapter 6 |
10 | Standard Cells, Programmable Array Logic, Design Approach. | Chapter 6 |
11 | VHDL Synthesis, Circuit Design Flow, Circuit Synthesis, Simulation | Chapter 7 |
12 | Layout, Design capture tools, Design Verification Tools, Test Principles | Chapter 7 |
13 | CMOS Testing, Need for testing, Test Principles, Design Strategies for test | Chapter 8 |
14 | Chip level Test Techniques, System-level Test Techniques, Layout Design for improved Testability | Chapter 8 |
Sources
Course Book | 1. Essential VLSI Circuits and Systems, Pucknell, D.A. & Eshraghian, S., Prentice Hall, 2005. |
---|---|
Other Sources | 2. 1. Digital Integrated Circuits: A Design Perspective, Jan M. Rabaey, Prentice Hall, 1st edition, 1995 |
3. 2. CMOS Digital Integrated Circuits: Analysis and Design, S.-M. Kang and Y. Leblebici, McGraw-Hill, 2003 | |
4. 3. Principles of CMOS VLSI Design. A Systems Perspective with VERILOG, N.H.Weste, K. Eshraghian., Addison-Wesley, 2002 | |
5. 4. Modern VSLI Design a System Approach, W. Wolf, Prentice-Hall, 3 edition, 2002 | |
6. 5. Introductory VHDL, By Yalamanchili, Prentice Hall, 2000 |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | 1 | 5 |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 2 | 20 |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 40 |
Final Exam/Final Jury | 1 | 35 |
Toplam | 6 | 100 |
Percentage of Semester Work | 65 |
---|---|
Percentage of Final Work | 35 |
Total | 100 |
Course Category
Core Courses | |
---|---|
Major Area Courses | X |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Has adequate knowledge in mathematics, science, and computer engineering-specific subjects; uses theoretical and practical knowledge in these areas to solve complex engineering problems. | X | ||||
2 | Identifies, defines, formulates, and solves complex engineering problems; selects and applies appropriate analysis and modeling methods for this purpose. | X | ||||
3 | Designs a complex system, process, device, or product to meet specific requirements under realistic constraints and conditions; applies modern design methods for this purpose. | X | ||||
4 | Develops, selects, and uses modern techniques and tools necessary for the analysis and solution of complex problems encountered in computer engineering applications; uses information technologies effectively. | X | ||||
5 | Designs experiments, conducts experiments, collects data, analyzes and interprets results for the investigation of complex engineering problems or research topics specific to the discipline of computer engineering. | |||||
6 | Works effectively in disciplinary and multidisciplinary teams; gains the ability to work individually. | |||||
7 | Communicates effectively in Turkish, both orally and in writing; writes effective reports and understands written reports, prepares design and production reports, makes effective presentations, gives and receives clear and understandable instructions. | |||||
8 | Knows at least one foreign language; writes effective reports and understands written reports, prepares design and production reports, makes effective presentations, gives and receives clear and understandable instructions. | |||||
9 | Has awareness of the necessity of lifelong learning; accesses information, follows developments in science and technology, and continuously improves oneself. | X | ||||
10 | Acts in accordance with ethical principles and has awareness of professional and ethical responsibility. | |||||
11 | Has knowledge about the standards used in computer engineering applications. | |||||
12 | Has knowledge about workplace practices such as project management, risk management, and change management. | |||||
13 | Gains awareness about entrepreneurship and innovation. | |||||
14 | Has knowledge about sustainable development. | |||||
15 | Has knowledge about the health, environmental, and safety impacts of computer engineering applications in universal and societal dimensions and the contemporary issues reflected in the field of engineering. | |||||
16 | Gains awareness of the legal consequences of engineering solutions. | |||||
17 | Analyzes, designs, and expresses numerical computation and digital representation systems. | |||||
18 | Uses programming languages and appropriate computer engineering concepts to solve computational problems. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 4 | 64 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 1 | 16 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | 2 | 5 | 10 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 10 | 20 |
Prepration of Final Exams/Final Jury | 1 | 15 | 15 |
Total Workload | 125 |