ECTS - Introduction to Artificial Intelligence
Introduction to Artificial Intelligence (CMPE462) Course Detail
| Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
|---|---|---|---|---|---|---|---|
| Introduction to Artificial Intelligence | CMPE462 | Area Elective | 3 | 0 | 0 | 3 | 5 |
| Pre-requisite Course(s) |
|---|
| (CMPE323 veya SE328) |
| Course Language | English |
|---|---|
| Course Type | Technical Elective Courses |
| Course Level | Bachelor’s Degree (First Cycle) |
| Mode of Delivery | Face To Face |
| Learning and Teaching Strategies | Lecture. |
| Course Lecturer(s) |
|
| Course Objectives | The objective of this course is to introduce basic concepts in both symbolic and non-symbolic approaches to Artificial Intelligence (AI). |
| Course Learning Outcomes |
The students who succeeded in this course;
|
| Course Content | Agent Paradigm, Problem Solving by Searching, Informed/Uninformed Search Methods, Genetic Algorithms, Simulated Annealing, Constraint Satisfaction Problems, Adversarial Search, Ant Colony Optimization, Particle Swarm Optimization, Artificial Bee Colony Optimization, Multi-Agent Systems & Intelligent Agents, Multi-Agent Interactions, Philosophical Foundations & Ethics. |
Weekly Subjects and Releated Preparation Studies
| Week | Subjects | Preparation |
|---|---|---|
| 1 | Agent Paradigm | Chapters 1-2 (main text) |
| 2 | Agent Paradigm | Chapter 1-2 |
| 3 | Problem Solving by Searching, | Ch 3 |
| 4 | Informed/Uninformed Search Methods | Ch. 4 |
| 5 | Genetic Algorithms and Simulated Annealing | Ch. 4 |
| 6 | Constraint satisfaction problems | Ch. 5 |
| 7 | Adversarial Search | Ch. 6 |
| 8 | Logical Agents | Ch. 7 |
| 9 | Knowledge Engineering | Resource #5 |
| 10 | Expert Systems | Resource #4 |
| 11 | Expert Systems | Resource #4 |
| 12 | Communication | Ch. 22 |
| 13 | Communication | Ch. 22 |
| 14 | AI Applications | Resource #3 |
Sources
| Course Book | 1. Artificial Intelligence: A Modern Approach (Second Edition). Stuart Russell and Peter Norvig Prentice-Hall, 2003, ISBN: 0-13-790395 |
|---|---|
| Other Sources | 2. 1. Artificial Intelligence, Patrick H. Winston, Addison-Wesley, 1992. ISBN: 0-201-533774. |
| 3. 2. http://www.cs.rmit.edu.au/AI-Search/Product/ | |
| 4. 3. “Engineering Applications of Artificial Intelligence” journal, ISSN: 0952-1976, Elsevier, B.V. | |
| 5. 4. Expert Systems: Principles and Programming, Fourth Edition by Joseph C. Giarratano and Gary D. Riley, PWS Publishing Company, 2004. | |
| 6. 5. Knowledge Representation and Reasoning, Ronald Brachman and Hector Levesque, The Morgan Kaufmann Series in Artificial Intelligence , 2004. |
Evaluation System
| Requirements | Number | Percentage of Grade |
|---|---|---|
| Attendance/Participation | - | - |
| Laboratory | - | - |
| Application | - | - |
| Field Work | - | - |
| Special Course Internship | - | - |
| Quizzes/Studio Critics | - | - |
| Homework Assignments | 3 | 35 |
| Presentation | - | - |
| Project | - | - |
| Report | - | - |
| Seminar | - | - |
| Midterms Exams/Midterms Jury | 1 | 25 |
| Final Exam/Final Jury | 1 | 40 |
| Toplam | 5 | 100 |
| Percentage of Semester Work | 60 |
|---|---|
| Percentage of Final Work | 40 |
| Total | 100 |
Course Category
| Core Courses | |
|---|---|
| Major Area Courses | X |
| Supportive Courses | |
| Media and Managment Skills Courses | |
| Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
| # | Program Qualifications / Competencies | Level of Contribution | ||||
|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | ||
| 1 | Has adequate knowledge in mathematics, science, and computer engineering-specific subjects; uses theoretical and practical knowledge in these areas to solve complex engineering problems. | X | ||||
| 2 | Identifies, defines, formulates, and solves complex engineering problems; selects and applies appropriate analysis and modeling methods for this purpose. | X | ||||
| 3 | Designs a complex system, process, device, or product to meet specific requirements under realistic constraints and conditions; applies modern design methods for this purpose. | X | ||||
| 4 | Develops, selects, and uses modern techniques and tools necessary for the analysis and solution of complex problems encountered in computer engineering applications; uses information technologies effectively. | |||||
| 5 | Designs experiments, conducts experiments, collects data, analyzes and interprets results for the investigation of complex engineering problems or research topics specific to the discipline of computer engineering. | X | ||||
| 6 | Works effectively in disciplinary and multidisciplinary teams; gains the ability to work individually. | |||||
| 7 | Communicates effectively in Turkish, both orally and in writing; writes effective reports and understands written reports, prepares design and production reports, makes effective presentations, gives and receives clear and understandable instructions. | X | ||||
| 8 | Knows at least one foreign language; writes effective reports and understands written reports, prepares design and production reports, makes effective presentations, gives and receives clear and understandable instructions. | |||||
| 9 | Has awareness of the necessity of lifelong learning; accesses information, follows developments in science and technology, and continuously improves oneself. | X | ||||
| 10 | Acts in accordance with ethical principles and has awareness of professional and ethical responsibility. | X | ||||
| 11 | Has knowledge about the standards used in computer engineering applications. | |||||
| 12 | Has knowledge about workplace practices such as project management, risk management, and change management. | |||||
| 13 | Gains awareness about entrepreneurship and innovation. | |||||
| 14 | Has knowledge about sustainable development. | |||||
| 15 | Has knowledge about the health, environmental, and safety impacts of computer engineering applications in universal and societal dimensions and the contemporary issues reflected in the field of engineering. | |||||
| 16 | Gains awareness of the legal consequences of engineering solutions. | |||||
| 17 | Analyzes, designs, and expresses numerical computation and digital representation systems. | X | ||||
| 18 | Uses programming languages and appropriate computer engineering concepts to solve computational problems. | X | ||||
ECTS/Workload Table
| Activities | Number | Duration (Hours) | Total Workload |
|---|---|---|---|
| Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
| Laboratory | |||
| Application | |||
| Special Course Internship | |||
| Field Work | |||
| Study Hours Out of Class | 14 | 2 | 28 |
| Presentation/Seminar Prepration | |||
| Project | |||
| Report | |||
| Homework Assignments | 3 | 8 | 24 |
| Quizzes/Studio Critics | |||
| Prepration of Midterm Exams/Midterm Jury | 1 | 10 | 10 |
| Prepration of Final Exams/Final Jury | 1 | 15 | 15 |
| Total Workload | 125 | ||
