Knowledge Engineering (CMPE465) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Knowledge Engineering CMPE465 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Technical Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives This course is designed to provide the skills needed to develop computer programs that contain large amount of knowledge, rules and reasoning mechanisms to provide solutions to real-world problems.
Course Learning Outcomes The students who succeeded in this course;
  • Use different methods to represent knowledge to aid the acquisition, validation and re-use of knowledge
  • Apply rule-based, graphical or logical techniques in knowledge representation
  • Develop expert systems
  • Practice with the tools require to develop ontologies and semantic webs
  • Describe the basics of machine learning
Course Content Knowledge representation methods: rule-based, graph-based, logic-based methods, introduction to Prolog, knowledge acquisition, expert systems, ontology, semantic web, introduction to machine learning.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction Chapter 1 (main text)
2 Knowledge Representation Chapter 1
3 Rule-Based Knowledge Representation Chapter 7
4 Graph-Based Knowledge Representation Chapter 8
5 Semantic Nets Lecture Notes
6 Frames Chapter 8
7 First-Order Logic Chapter 2
8 Introduction to Prolog - I (Other sources 3)
9 Introduction to Prolog - II (Other sources 3)
10 Knowledge Acquisition (Other sources 2)
11 Expert Systems (Other sources 2)
12 Semantic Web (Other sources 4)
13 Ontology (Other sources 4)
14 Machine Learning Lecture Notes

Sources

Course Book 1. Knowledge Representation and Reasoning, R.J.Brachman and H.J.Levesque, Morgan Kaufmann, 2004.
Other Sources 2. 1. Knowledge Representation: Logical, Philosophical, and Computational Foundations, John F. Sowa, Brooks/Cole, Thomson Learning, 2000.
3. 2. Introduction to Expert Systems, Peter Jackson, Addison-Wesley, 1999,
4. 3. Programming in Prolog, W.F.Cloksin, C.S. Mellish, Springer-Verlag, 1981.
5. 4. W3C Semantic Web Activity, www.w3.org
6. 5. Reasoning about Knowledge, R. Fagin, J.Y.Halpern, Y. Moses, and M.Y.Vardi, MIT Press, 2003.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project 1 30
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 30
Final Exam/Final Jury 1 40
Toplam 3 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Has adequate knowledge in mathematics, science, and computer engineering-specific subjects; uses theoretical and practical knowledge in these areas to solve complex engineering problems. X
2 Identifies, defines, formulates, and solves complex engineering problems; selects and applies appropriate analysis and modeling methods for this purpose. X
3 Designs a complex system, process, device, or product to meet specific requirements under realistic constraints and conditions; applies modern design methods for this purpose. X
4 Develops, selects, and uses modern techniques and tools necessary for the analysis and solution of complex problems encountered in computer engineering applications; uses information technologies effectively. X
5 Designs experiments, conducts experiments, collects data, analyzes and interprets results for the investigation of complex engineering problems or research topics specific to the discipline of computer engineering. X
6 Works effectively in disciplinary and multidisciplinary teams; gains the ability to work individually. X
7 Communicates effectively in Turkish, both orally and in writing; writes effective reports and understands written reports, prepares design and production reports, makes effective presentations, gives and receives clear and understandable instructions. X
8 Knows at least one foreign language; writes effective reports and understands written reports, prepares design and production reports, makes effective presentations, gives and receives clear and understandable instructions.
9 Has awareness of the necessity of lifelong learning; accesses information, follows developments in science and technology, and continuously improves oneself.
10 Acts in accordance with ethical principles and has awareness of professional and ethical responsibility.
11 Has knowledge about the standards used in computer engineering applications.
12 Has knowledge about workplace practices such as project management, risk management, and change management.
13 Gains awareness about entrepreneurship and innovation.
14 Has knowledge about sustainable development.
15 Has knowledge about the health, environmental, and safety impacts of computer engineering applications in universal and societal dimensions and the contemporary issues reflected in the field of engineering.
16 Gains awareness of the legal consequences of engineering solutions.
17 Analyzes, designs, and expresses numerical computation and digital representation systems.
18 Uses programming languages and appropriate computer engineering concepts to solve computational problems. X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration
Project 1 15 15
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 15 15
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 125