ECTS - Probability and Statistics

Probability and Statistics (IE220) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Probability and Statistics IE220 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type N/A
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Question and Answer, Problem Solving.
Course Coordinator
Course Lecturer(s)
  • Instructor Dr. Burcu DEVRİM İÇTENBAŞ
Course Assistants
Course Objectives In this course, the students will be learning fundamental concepts of the probability and statistics so that they can solve practical problems of engineering which requires statistical techniques.
Course Learning Outcomes The students who succeeded in this course;
  • Students will acquire and apply fundamental concepts of probability theory to engineering problems.
  • Students will develop an insight about the role of statistics for different engineering disciplines.
  • Students will be able to evaluate and solve real life processes and problems using statistical applications.
  • Students will be able to use a suitable computer-based statistical package for statistical analysis.
Course Content Introduction to probability and statistics; random variables and probability distributions; expected value; sampling distributions; one and two sample estimation problems; test of hypotheses; simple linear regression.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 The role of probability and statistics in engineering [1] pages 1-15
2 Descriptive Statistics-Numerical Summary [1] pages 191-214
3 Descriptive Statistics-Graphical Summary [1] pages 191-214
4 Probability [1] pages 17-57
5 Probability [1] pages 17-57
6 Random Variables [1] pages 67-74 [1] pages 108-114
7 Midterm 1
8 Discrete Probability Distributions [1] pages 79-97
9 Continuous Probability Distributions [1] pages 116-127
10 Sampling Distributions [1] pages 223-231
11 Point and Interval Estimation [1] pages 253-263
12 Point and Interval Estimation [1] pages 253-263
13 Hypothesis Testing [1] pages 283-314
14 Midterm 2
15 Inference for two samples [1] pages 351-368
16 Simple Linear Regression [1] pages 401-440

Sources

Course Book 1. Montgomery, D.C., and Runger, G.C., Applied Statistics and Probability for Engineers, John Wiley and Sons, Inc., 4th Edition, June 2006.
Other Sources 2. Walpole, R.E. , Myers, R.H., Myers, S.L. an Ye, K., Probability and Statistics for Engineers and Scientists, Prentice Hall, 8th edition, 2007.
3. Milton, J.S. and Arnold, J.C., Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, McGraw-Hill, 4th edition, 2002.
4. Ross, S., Introduction to Probability and Statistics for Engineers and Scientists, Academic Press, 3rd edition, 2004.
5. Triola, M.F., Essentials of Statistics, Addison Wesley,2nd edition, 2004.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 4 20
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 40
Final Exam/Final Jury 1 40
Toplam 7 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses
Major Area Courses
Supportive Courses X
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge in mathematics, science and subjects specific to the computer engineering discipline; the ability to apply theoretical and practical knowledge of these areas to complex engineering problems. X
2 The ability to identify, define, formulate and solve complex engineering problems; selecting and applying proper analysis and modeling techniques for this purpose. X
3 The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose.
4 The ability to develop, select and utilize modern techniques and tools essential for the analysis and determination of complex problems in computer engineering applications; the ability to utilize information technologies effectively. X
5 The ability to design experiments, conduct experiments, gather data, analyze and interpret results for the investigation of complex engineering problems or research topics specific to the computer engineering discipline. X
6 The ability to work effectively in inter/inner disciplinary teams; ability to work individually
7 Effective oral and writen communication skills in Turkish; the knowledge of at least one foreign language; the ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and to receive clear and understandable instructions.
8 Recognition of the need for lifelong learning; the ability to access information, to follow recent developments in science and technology.
9 The ability to behave according to ethical principles, awareness of professional and ethical responsibility; knowledge of the standards utilized in computer engineering applications.
10 Knowledge on business practices such as project management, risk management and change management; awareness about entrepreneurship, innovation; knowledge on sustainable development.
11 Knowledge on the effects of computer engineering applications on the universal and social dimensions of health, environment and safety; awareness of the legal consequences of engineering solutions.
12 An ability to describe, analyze and design digital computing and representation systems. X
13 An ability to use appropriate computer engineering concepts and programming languages in solving computing problems. X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 3 48
Presentation/Seminar Prepration
Project
Report
Homework Assignments 4 5 20
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 3 6
Prepration of Final Exams/Final Jury 1 3 3
Total Workload 125