Digital Image Processing (CMPE464) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Digital Image Processing CMPE464 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Technical Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The main aim of the course is : to give an introduction to 1-D and 2-D signals, to give introduction to spatial domain and frequency domain of signals to give an introduction to theories and mathematical methods used in image analysis, to introduce the analytical tools and methods which are currently used in digital image processing, and to make the students to apply these tools in the laboratory in image restoration, enhancement and compression.
Course Learning Outcomes The students who succeeded in this course;
  • Develop theoretic and algorithmic principles behind the acquisition, display, manipulation and processing of digital images
  • Explain clearly the use of basic mathematical concepts in image analysis, in particular transform theory (in space as well as in the frequency domain), image enhancement methods, image compression and image restoration.
  • Provide development of skills to effectively integrate new concepts in image processing
Course Content Introduction to signal and image processing, introduction to digital image processing, sampling, reconstruction, and quantization, digital image representation, image transforms, enhancement, restoration, segmentation and description.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to signals and systems Other sources
2 1-D and 2-D Signals and signal processing Other source
3 Sampling and quantization of 2-D signals Other source
4 Introduction to Digital Images, and image processing applications Ch.1 (main text)
5 Fundamentals of image processing Ch.1-2 (main text)
6 Intensity Transformations and Spatial Filtering Ch. 2
7 Processing of 1-D and 2-D signals, and processing in the frequency domain, mathematical fundamentals of fast fourier transform Ch. 2
8 Image Enhancement Ch.3, Ch. 4
9 Image Restoration Ch.5
10 Color Image Processing Ch. 6
11 Image Compression Ch.8
12 Morphological Image Processing Ch.9
13 Image Segmentation Ch.10
14 Object Recognition. Ch.12

Sources

Course Book 1. Gonzalez, R. C., Woods, R. E., Digital Image Processing, Addison-Wesley, 2008.
Other Sources 2. 1. Jain, A. K., Fundamentals of digital Image Processing, Prentice-Hall.
3. 2. Castleman, K. R., Digital Image Processing, Prentice Hall.
4. 3. John G. Prokis and Dimitris G. Manolakis, “Digital Signal Processing: Principle, Algorithms and Applications” Prentice Hall Inc., Englewood Cliffs, NJ (USA), 3rd Ed., 1996.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 5 30
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 35
Final Exam/Final Jury 1 35
Toplam 7 100
Percentage of Semester Work 65
Percentage of Final Work 35
Total 100

Course Category

Core Courses
Major Area Courses
Supportive Courses X
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gains adequate knowledge in mathematics, science, and subjects specific to the software engineering discipline; acquires the ability to apply theoretical and practical knowledge of these areas to complex engineering problems. X
2 Gains the ability to identify, define, formulate, and solve complex engineering problems; selects and applies proper analysis and modeling techniques for this purpose. X
3 Develops the ability to design a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements; applies modern design methods for this purpose. X
4 Demonstrates the ability to select, and utilize modern techniques and tools essential for the analysis and determination of complex problems in software engineering applications; uses information technologies effectively. X
5 Develops the ability to design experiments, gather data, analyze, and interpret results for the investigation of complex engineering problems or research topics specific to the software engineering discipline.
6 Demonstrates the ability to work effectively both individually and in disciplinary and interdisciplinary teams in fields related to software engineering.
7 Demonstrates the ability to communicate effectively in Turkish, both orally and in writing; to write effective reports and understand written reports, to prepare design and production reports, to deliver effective presentations, and to give and receive clear and understandable instructions.
8 Gains knowledge of at least one foreign language; acquires the ability to write effective reports and understand written reports, prepare design and production reports, deliver effective presentations, and give and receive clear and understandable instructions.
9 Acquires an awareness of the necessity of lifelong learning; the ability to access information, follow developments in science and technology, and continuously improve oneself.
10 Acts in accordance with ethical principles and possesses knowledge of professional and ethical responsibilities.
11 Knows the standards used in software engineering practices.
12 Knows about business practices such as project management, risk management and change management.
13 Gains awareness about entrepreneurship and innovation.
14 Gains knowledge on sustainable development.
15 Has knowledge about the universal and societal impacts of software engineering practices on health, environment, and safety, as well as the contemporary issues reflected in the field of engineering.
16 Acquires awareness of the legal consequences of engineering solutions.
17 Applies knowledge and skills in identifying user needs, developing user-focused solutions and improving user experience. X
18 Gains the ability to apply engineering approaches in the development of software systems by carrying out analysis, design, implementation, verification, validation, and maintenance processes.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 1 16
Presentation/Seminar Prepration
Project
Report
Homework Assignments 5 8 40
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 10 10
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 129