Visual Programming (CMPE312) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Visual Programming CMPE312 Area Elective 2 2 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Technical Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The objective of the course is to cover visual programming skills needed for modern software development.
Course Learning Outcomes The students who succeeded in this course;
  • Demonstrate fundamental skills in utilizing the tools of a visual environment in terms of the set of available command menus and toolbars
  • Explain and use of delegates and events for producing event-driven application
  • Implement SDI and MDI applications while using forms, dialogs, and other types of GUI components
  • Produce and use specialized new GUI components
  • Explain message passing mechanism between components and threads using messaging
  • Apply visual programming to software development by designing projects with menus and submenus
  • Use visual programming environment to create simple visual applications
Course Content Review of object-oriented programming, visual programming basics such as value types, operator overloading, exception and event handling; using GUI frameworks; working with files and data access by using XML.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introducing Visual Programming fundamentals Part 1 (main text)
2 Introducing Visual Programming fundamentals Part 1
3 Review of OOP Part 2
4 Review of OOP (cont.) Part 2
5 Microsoft .NET Programming Basics Chapter 4,5,6
6 Exception Handling Chapter 11
7 Arrays and Collections Chapter 8
8 Arrays and Collections Chapter 8
9 Inheritance Chapter 11
10 Inheritance (cont.) Chapter 11
11 Polymorphism Chapter 12
12 Polymorphism (cont.) Chapter 12
13 Dialog Boxes and Controls Chapter 13
14 Dialog Boxes and Controls (cont.) Chapter 14
15 Graphical Outputs, Working with Files Chapter 15
16 Review

Sources

Course Book 1. Microsoft Visual C# 2008: An Introduction to Object Oriented Programming, Joyce Farrell, Third Edition, 2009, ISBN:1-4239-0255
Other Sources 2. 1. Microsoft Visual C# .NET (Step by Step) by John Sharp, Jon Jagger, Microsoft Press, 2002, ISBN : 0-7356-1289-7
3. 2. Ivor Horton's Beginning Visual C++ 2005, ISBN : 0-7645-7197-4
4. 3. Programming Windows®, Fifth Edition , Charles Petzold, ISB : 1-57231-995-X
5. 4. Microsoft Visual C++, .NET Deluxe Learning Edition, Microsoft Corporation, ISB : 0-7356-1908-5
6. 5. Visual Basic 2008 , How to Program by P.J.Deitel, H.M.Deitel, ISBN-13: 978-0-13-715536-1

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 5
Laboratory 1 15
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project 1 20
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 20
Final Exam/Final Jury 1 40
Toplam 5 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses
Major Area Courses
Supportive Courses X
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gains adequate knowledge in mathematics, science, and subjects specific to the software engineering discipline; acquires the ability to apply theoretical and practical knowledge of these areas to complex engineering problems. X
2 Gains the ability to identify, define, formulate, and solve complex engineering problems; selects and applies proper analysis and modeling techniques for this purpose. X
3 Develops the ability to design a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements; applies modern design methods for this purpose. X
4 Demonstrates the ability to select, and utilize modern techniques and tools essential for the analysis and determination of complex problems in software engineering applications; uses information technologies effectively. X
5 Develops the ability to design experiments, gather data, analyze, and interpret results for the investigation of complex engineering problems or research topics specific to the software engineering discipline.
6 Demonstrates the ability to work effectively both individually and in disciplinary and interdisciplinary teams in fields related to software engineering. X
7 Demonstrates the ability to communicate effectively in Turkish, both orally and in writing; to write effective reports and understand written reports, to prepare design and production reports, to deliver effective presentations, and to give and receive clear and understandable instructions.
8 Gains knowledge of at least one foreign language; acquires the ability to write effective reports and understand written reports, prepare design and production reports, deliver effective presentations, and give and receive clear and understandable instructions.
9 Acquires an awareness of the necessity of lifelong learning; the ability to access information, follow developments in science and technology, and continuously improve oneself.
10 Acts in accordance with ethical principles and possesses knowledge of professional and ethical responsibilities.
11 Knows the standards used in software engineering practices.
12 Knows about business practices such as project management, risk management and change management.
13 Gains awareness about entrepreneurship and innovation.
14 Gains knowledge on sustainable development.
15 Has knowledge about the universal and societal impacts of software engineering practices on health, environment, and safety, as well as the contemporary issues reflected in the field of engineering.
16 Acquires awareness of the legal consequences of engineering solutions.
17 Applies knowledge and skills in identifying user needs, developing user-focused solutions and improving user experience. X
18 Gains the ability to apply engineering approaches in the development of software systems by carrying out analysis, design, implementation, verification, validation, and maintenance processes. X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 4 64
Laboratory 1 5 5
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 1 16
Presentation/Seminar Prepration
Project 1 10 10
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 10 10
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 120