ECTS - Path Planning and Navigation

Path Planning and Navigation (MECE447) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Path Planning and Navigation MECE447 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Technical Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery
Learning and Teaching Strategies .
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives
Course Learning Outcomes The students who succeeded in this course;
Course Content Introduction, kinematic models for mobile robots, mobile robot control, robot attitude, robot navigation, path finding, obstacle mapping and its application to robot navigation, application of Kalman filtering.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction, Locomotion, Direct and Inverse Robot Kinematics, Homogenous Transformations
2 Kinematics of Unicycle, Bicycle, Differential Drive, Tricycle, Ackermann and Omnidirectional robots
3 Dynamic model for wheeled mobile Robot
4 Heading and speed control of front wheel steered vehicle, Heading and speed control of differential drive robot, Computed control for heading and velocity, Pursuit controller, Stanley controller
5 Heading and speed control of front wheel steered vehicle, Heading and speed control of differential drive robot, Computed control for heading and velocity, Pursuit controller, Stanley controller
6 Taxonomy of driving, perception, sensors, software architecture, environment representation, Rotation matrix for Yaw, Pitch and Roll, Homogenous Transformation matrix, Rotating a vector
7 Coordinate systems, Earth-centered Earth-fixed coordinate system, Computing location using Global Positioning System, Computing location using IMU, Dead Reckoning
8 Coordinate systems, Earth-centered Earth-fixed coordinate system, Computing location using Global Positioning System, Computing location using IMU, Dead Reckoning
9 Depth First Search, Breadth First Search, A* algorithm, Djikstra, Mini-Max, Alpha-Beta, Bug1, Bug2, Tangent Bug, Random Particle Optimization, Additive Attractive/Repulsive potential, Gradient descent
10 Depth First Search, Breadth First Search, A* algorithm, Djikstra, Mini-Max, Alpha-Beta, Bug1, Bug2, Tangent Bug, Random Particle Optimization, Additive Attractive/Repulsive potential, Gradient descent
11 Depth First Search, Breadth First Search, A* algorithm, Djikstra, Mini-Max, Alpha-Beta, Bug1, Bug2, Tangent Bug, Random Particle Optimization, Additive Attractive/Repulsive potential, Gradient descent
12 Sensors for obstacle detection, Dead reckoning navigation, Use of previously detected obstacles for navigation
13 Probabilistic estimation, Linear Kalman filtering, Extended Kalman filter
14 Probabilistic estimation, Linear Kalman filtering, Extended Kalman filter

Sources

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury - -
Final Exam/Final Jury - -
Toplam 0 0
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gains adequate knowledge in mathematics, science, and subjects specific to the software engineering discipline; acquires the ability to apply theoretical and practical knowledge of these areas to complex engineering problems.
2 Gains the ability to identify, define, formulate, and solve complex engineering problems; selects and applies proper analysis and modeling techniques for this purpose. X
3 Develops the ability to design a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements; applies modern design methods for this purpose. X
4 Demonstrates the ability to select, and utilize modern techniques and tools essential for the analysis and determination of complex problems in software engineering applications; uses information technologies effectively. X
5 Develops the ability to design experiments, gather data, analyze, and interpret results for the investigation of complex engineering problems or research topics specific to the software engineering discipline.
6 Demonstrates the ability to work effectively both individually and in disciplinary and interdisciplinary teams in fields related to software engineering.
7 Demonstrates the ability to communicate effectively in Turkish, both orally and in writing; to write effective reports and understand written reports, to prepare design and production reports, to deliver effective presentations, and to give and receive clear and understandable instructions.
8 Gains knowledge of at least one foreign language; acquires the ability to write effective reports and understand written reports, prepare design and production reports, deliver effective presentations, and give and receive clear and understandable instructions.
9 Acquires an awareness of the necessity of lifelong learning; the ability to access information, follow developments in science and technology, and continuously improve oneself.
10 Acts in accordance with ethical principles and possesses knowledge of professional and ethical responsibilities.
11 Knows the standards used in software engineering practices.
12 Knows about business practices such as project management, risk management and change management.
13 Gains awareness about entrepreneurship and innovation.
14 Gains knowledge on sustainable development.
15 Has knowledge about the universal and societal impacts of software engineering practices on health, environment, and safety, as well as the contemporary issues reflected in the field of engineering.
16 Acquires awareness of the legal consequences of engineering solutions.
17 Applies knowledge and skills in identifying user needs, developing user-focused solutions and improving user experience.
18 Gains the ability to apply engineering approaches in the development of software systems by carrying out analysis, design, implementation, verification, validation, and maintenance processes.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours)
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class
Presentation/Seminar Prepration
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury
Prepration of Final Exams/Final Jury
Total Workload 0