ECTS - Introduction to the History of Philosophy

Introduction to the History of Philosophy (HUM321) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Introduction to the History of Philosophy HUM321 General Elective 3 0 0 3 4
Pre-requisite Course(s)
N/A
Course Language English
Course Type Non-Technical Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Question and Answer.
Course Coordinator
Course Lecturer(s)
  • Staff
Course Assistants
Course Objectives The course aims at providing students with comprehensive background knowledge in the history of Philosophy, covering a wide span from Ancient Greece to the modern era.
Course Learning Outcomes The students who succeeded in this course;
  • Furnished with knowledge on the basic philosophical movements and the views of the most outstanding philosophers in the History of Philosophy,
  • Learn thinking critically,
  • Becoming familiar to relate ideas and phenomena to one another.
Course Content A study of selected philosophers from the times of Ancient, Medieval and Modern Philosophy, 19th Century Philosophy and 20th Century Philosophy.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction. Ancient Philosophy: A brief study of Thales, Anaximander and Anaximenes Recommended throughout the course
2 A brief study of Pythagoras, Heraclitus
3 The Sophists, Socrates
4 Plato
5 Aristotle
6 The Stoics, the Skeptics, Plotinus
7 Medieval Philosophy: St. Augustine Midterm
8 Thomas Aquinas
9 Modern Philosophy: René Descartes
10 Baruch Spinoza, David Hume
11 Hume continued
12 Nineteenth Century Philosophy: Friedrich Nietzsche
13 Twentieth Century Philosophy: Edmund Husserl
14 Jean-Paul Sartre, Simone de Beauvoir
15 Review
16 Final Examination

Sources

Course Book 1. Stumpf, Samuel Enoch. Socrates to Sartre: A History of Philosophy (New York: McGraw-Hill Book Company, 1996).

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 1 5
Presentation 1 10
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 30
Final Exam/Final Jury 1 40
Toplam 4 85
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gains adequate knowledge in mathematics, science, and subjects specific to the software engineering discipline; acquires the ability to apply theoretical and practical knowledge of these areas to complex engineering problems.
2 Gains the ability to identify, define, formulate, and solve complex engineering problems; selects and applies proper analysis and modeling techniques for this purpose.
3 Develops the ability to design a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements; applies modern design methods for this purpose.
4 Demonstrates the ability to select, and utilize modern techniques and tools essential for the analysis and determination of complex problems in software engineering applications; uses information technologies effectively.
5 Develops the ability to design experiments, gather data, analyze, and interpret results for the investigation of complex engineering problems or research topics specific to the software engineering discipline.
6 Demonstrates the ability to work effectively both individually and in disciplinary and interdisciplinary teams in fields related to software engineering.
7 Demonstrates the ability to communicate effectively in Turkish, both orally and in writing; to write effective reports and understand written reports, to prepare design and production reports, to deliver effective presentations, and to give and receive clear and understandable instructions.
8 Gains knowledge of at least one foreign language; acquires the ability to write effective reports and understand written reports, prepare design and production reports, deliver effective presentations, and give and receive clear and understandable instructions.
9 Acquires an awareness of the necessity of lifelong learning; the ability to access information, follow developments in science and technology, and continuously improve oneself. X
10 Acts in accordance with ethical principles and possesses knowledge of professional and ethical responsibilities.
11 Knows the standards used in software engineering practices.
12 Knows about business practices such as project management, risk management and change management.
13 Gains awareness about entrepreneurship and innovation.
14 Gains knowledge on sustainable development.
15 Has knowledge about the universal and societal impacts of software engineering practices on health, environment, and safety, as well as the contemporary issues reflected in the field of engineering.
16 Acquires awareness of the legal consequences of engineering solutions.
17 Applies knowledge and skills in identifying user needs, developing user-focused solutions and improving user experience.
18 Gains the ability to apply engineering approaches in the development of software systems by carrying out analysis, design, implementation, verification, validation, and maintenance processes.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 1 10 10
Presentation/Seminar Prepration
Project
Report
Homework Assignments 5 3 15
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 10 10
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 98