Data Structures (CMPE226) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Data Structures CMPE226 4. Semester 3 0 0 3 8
Pre-requisite Course(s)
CMPE225
Course Language English
Course Type Compulsory Departmental Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Question and Answer, Drill and Practice, Brain Storming.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives This course introduces the abstract concepts that are useful in problem solving, and shows how these concepts are implemented in a programming language. The students learn how to choose a suitable data structure for a specific problem, how to create more complex data structures using the already existing data types, and also how to implement and analyze the algorithms developed for these data structures. The students get a chance to apply their knowledge by completing assignments written in the C++ language.
Course Learning Outcomes The students who succeeded in this course;
  • Employ the data structure(s) necessary for a given problem
  • Use linked lists, stacks, queues, and binary trees
  • Apply recursion
  • Apply searching, sorting, and hashing algorithms/techniques
  • Identify the most appropriate data structure for the problem at hand
  • Construct complex data structures using existing data types
Course Content Stacks, recursion, queues; creation and destruction of dynamic variables, serial linked lists, circular lists, doubly linked lists, circular doubly linked lists; sorting and searching algorithms, space and time considerations, binary trees, binary search trees, tree traversal algorithms, binary tree sorting algorithms, hashing.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction, Standard Template Library (STL) Chapter 2,4 (main text)
2 Linked Lists Chapter 5
3 Linked Lists Chapter 5
4 Linked Lists Chapter 5
5 Recursion Chapter 6
6 Stack Chapter 7
7 Stack Chapter 7
8 Queues Chapter 8
9 Queues Chapter 8
10 Searching, Sorting Chapter 9,10
11 Hashing Chapter 5
12 Binary Trees Chapter 11
13 Binary Trees Chapter 11
14 Heap Sort Chapter 11
15 Review
16 Review

Sources

Course Book 1. Data Structures Using C++, D.S. Malik, Thomson Course Technology, 1st Edition.
Other Sources 2. Data Structures Using C and C++, Y.Langsam, Prentice-Hall International Inc., 2nd Edition.
3. Data Structures and Algorithm Analysis in C++, M. Weiss, Addison Wesley, 3rd Edition
4. Practical Data Structures in C++, B. Flamig, John Wiley & Sons, Pap/Dis Edition.
5. Fundamentals of Data Structures in C++, E. Horowitz, S. Sahni, D. Mehta, Silicon Press, 2nd Edition.
6. Data Structures and Algorithms in C++, M.T. Goodrich, R.Tamassia, D. M. Mount, Wiley, 2nd Edition.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 60
Final Exam/Final Jury 1 40
Toplam 3 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses
Major Area Courses
Supportive Courses X
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gains adequate knowledge in mathematics, science, and subjects specific to the software engineering discipline; acquires the ability to apply theoretical and practical knowledge of these areas to complex engineering problems. X
2 Gains the ability to identify, define, formulate, and solve complex engineering problems; selects and applies proper analysis and modeling techniques for this purpose. X
3 Develops the ability to design a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements; applies modern design methods for this purpose. X
4 Demonstrates the ability to select, and utilize modern techniques and tools essential for the analysis and determination of complex problems in software engineering applications; uses information technologies effectively. X
5 Develops the ability to design experiments, gather data, analyze, and interpret results for the investigation of complex engineering problems or research topics specific to the software engineering discipline.
6 Demonstrates the ability to work effectively both individually and in disciplinary and interdisciplinary teams in fields related to software engineering.
7 Demonstrates the ability to communicate effectively in Turkish, both orally and in writing; to write effective reports and understand written reports, to prepare design and production reports, to deliver effective presentations, and to give and receive clear and understandable instructions.
8 Gains knowledge of at least one foreign language; acquires the ability to write effective reports and understand written reports, prepare design and production reports, deliver effective presentations, and give and receive clear and understandable instructions.
9 Acquires an awareness of the necessity of lifelong learning; the ability to access information, follow developments in science and technology, and continuously improve oneself.
10 Acts in accordance with ethical principles and possesses knowledge of professional and ethical responsibilities.
11 Knows the standards used in software engineering practices.
12 Knows about business practices such as project management, risk management and change management.
13 Gains awareness about entrepreneurship and innovation.
14 Gains knowledge on sustainable development.
15 Has knowledge about the universal and societal impacts of software engineering practices on health, environment, and safety, as well as the contemporary issues reflected in the field of engineering.
16 Acquires awareness of the legal consequences of engineering solutions.
17 Applies knowledge and skills in identifying user needs, developing user-focused solutions and improving user experience. X
18 Gains the ability to apply engineering approaches in the development of software systems by carrying out analysis, design, implementation, verification, validation, and maintenance processes. X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 4 64
Presentation/Seminar Prepration
Project
Report
Homework Assignments 3 12 36
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 15 30
Prepration of Final Exams/Final Jury 1 20 20
Total Workload 198