ECTS - Analysis and Design of Algorithms for Social Sciences

Analysis and Design of Algorithms for Social Sciences (ECON551) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Analysis and Design of Algorithms for Social Sciences ECON551 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Social Sciences Master's Degree
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture.
Course Coordinator
Course Lecturer(s)
  • Dr. Dersin Öğretim Üyesi
Course Assistants
Course Objectives This course provides an understanding of the application of software technologies that enables users to make better and faster decisions based on big data features. Students will learn the principles and best practices for how to use big data in order to support fact-based decision-making. Emphasis will be given to applications in various data which has big data facilities. Therefore, in this course, the algorithms which are given in the class targeted the big data facilities in order to teach student this structure.
Course Learning Outcomes The students who succeeded in this course;
  • Upon the completion of this course, the student will be able to: Define and model the data structure with algorithms;
  • Use mathematical models and make the algorithms solve for equilibrium;
  • Analyze and critically evaluate from data driven materials;
  • Have the ability to predict the effects of changes in any kind of policy related to investigated field.
Course Content Review of algorithm analysis; divide and conquer algorithms; graphs; dynamic programming; greedy algorithms; randomized algorithms; P and NP; approximate algorithms for NP-hard problems or polynomial algorithms for subproblems of NP-hard problems; partial recursive functions; computations and undecidable problems.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Search and Sorting Lecture notes are available
2 Divide and Conquer Algorithms Lecture notes are available
3 Graphs, Project Proposal Lecture notes are available
4 Dynamic Programming Lecture notes are available
5 Dynamic Programming Lecture notes are available
6 Greedy Algorithms Lecture notes are available
7 Randomized Algorithms Lecture notes are available
8 P and NP Lecture notes are available
9 Work with NP Hard Problems Lecture notes are available
10 Work with NP Hard Problems Lecture notes are available
11 Partial Recursive function Lecture notes are available
12 Computations and Unsolvable Problems Lecture notes are available
13 Computations and Unsolvable Problems, Final Presentation of Project Lecture notes are available
14 Final Exam

Sources

Other Sources 1. Ders Notları/ Lecture notes are available

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 14 10
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation 2 20
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 20
Final Exam/Final Jury - -
Toplam 17 50
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Can compare basic microeconomic theories and approaches and evaluate them with a critical perspective" X
2 Can compare basic macroeconomic theories and approaches and evaluate them with a critical perspective X
3 Applies mathematical modeling X
4 Analyzes economic phenomena using statistical and econometric methods X
5 Can analyze and interpret basic economic indicators X
6 Can access theoretical knowledge by conducting literature review and formulate an empirically verifiable hypothesis X
7 Can design a research project and conduct the research within the specified time frame X
8 Can develop new approaches for solving complex problems in the field of applied economics X
9 Develops and can recommend appropriate policies based on academic research results X
10 Can evaluate by combining economic knowledge with information obtained from other disciplines to solve problems X
11 Can use information technology effectively X
12 Acquires the ability to conduct independent research and learn X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 14 3 42
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 3 42
Presentation/Seminar Prepration 1 21 21
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 20 20
Prepration of Final Exams/Final Jury 1 25 25
Total Workload 150