ECTS - Software Measurement
Software Measurement (SE577) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Software Measurement | SE577 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Software Engineering Elective Courses |
Course Level | Natural & Applied Sciences Master's Degree |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture. |
Course Lecturer(s) |
|
Course Objectives | The objective of this course is to introduce foundations of measurement theory, core concepts in measurement process and to equip students with working knowledge on models, measures and practices used in software engineering. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Measurement theory; measure design and validation; measurement requirements; measurement process; techniques and tools for software measurement; measurement frameworks; measurement management; project, organization, product, service and quality measurement; ISO measurement standards; software estimation; software measurement repositories. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Measurement Theory | Abran, Fenton |
2 | Measurement Process I | Abran, Fenton |
3 | Measurement Process II | Abran, Fenton |
4 | Measurement Frameworks | Abran, Fenton, Park |
5 | Measurement in an Organization -GQM and ISO 15939 | Abran, Fenton, Park |
6 | Process Measurement | Abran, Fenton |
7 | Midterm | |
8 | Product Measurement | Abran, Fenton |
9 | Service Measurement | Abran, Fenton |
10 | Quality and Measurement | Abran, Fenton |
11 | Measurement for Software Management I | Abran, Fenton, Han |
12 | Measurement for Software Management II | Abran, Fenton, Han |
13 | Measurement Management | Abran, Fenton, Park |
14 | Measurement Repositories | Abran, Fenton, Park |
15 | Measurement Tools | Fenton, Park |
16 | In-Class Assignments |
Sources
Course Book | 1. A. Abran, Software metrics and software metrology. New Jersey: IEEE Com-puter Society / Wiley Partnership, 2010. |
---|---|
2. Fenton, Norman E., and Shari Lawrence Pfleeger. Software metrics: a rigor-ous and practical approach. PWS Publishing Co., 1998. | |
Other Sources | 3. Kan, Stephen H. Metrics and models in software quality engineering. Addi-son-Wesley Longman Publishing Co., Inc., 2002. |
4. Linda M. Laird,M.. Carol Brennan, Software Measurement and Estimation: A Practical Approach, 2006, IEEE | |
5. Park, Robert E., Wolfhart B. Goethert, and William A. Florac. Goal-Driven Software Measurement. A Guidebook. No. CMU/SEI-96-HB-002. CARNEGIE-MELLON UNIV PITTSBURGH PA SOFTWARE ENGINEERING INST, 1996. | |
6. Ebert, Christof, ed. Best Practices in Software Measurement: How to Use Metrics to Improve Project and Process Performance; 37 Tables. Springer, 2005. |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 3 | 30 |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 30 |
Final Exam/Final Jury | 1 | 40 |
Toplam | 5 | 100 |
Percentage of Semester Work | 60 |
---|---|
Percentage of Final Work | 40 |
Total | 100 |
Course Category
Core Courses | |
---|---|
Major Area Courses | |
Supportive Courses | X |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Gains the ability to apply advanced computing and/or information knowledge in solving software engineering problems. | X | ||||
2 | Develops solutions using different technologies, software architectures and life-cycle approaches. | X | ||||
3 | Gains the ability to design, implement, and evaluate a software system, component, process, or program using modern techniques and engineering tools for software engineering practices. | X | ||||
4 | Gains ability to gather/acquire, analyze, interpret data and make decisions to understand software requirements. | X | ||||
5 | Gains skills of effective oral and written communication and critical thinking about a wide range of issues arising in the context of working constructively on software projects. | X | ||||
6 | Gains the ability to access information to follow current developments in science and technology, conducts scientific research in the field of software engineering, and conducts a project. | X | ||||
7 | Acquires an understanding of professional, legal, ethical and social issues and responsibilities related to Software Engineering. | X | ||||
8 | Acquires project and risk management skills and gains awareness of the importance of entrepreneurship, innovation, and sustainable development, as well as international standards and methodologies. | X | ||||
9 | Understands the impact of Software Engineering solutions in a global, environmental, societal and legal context while making decisions. | X | ||||
10 | Gains awareness of the development, adoption, and ongoing support for the use of excellence standards in software engineering practices. | X |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 6 | 96 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | 3 | 10 | 30 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 1 | 15 | 15 |
Prepration of Final Exams/Final Jury | 1 | 30 | 30 |
Total Workload | 219 |