ECTS - Distance Education and E-Learning

Distance Education and E-Learning (ISE424) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Distance Education and E-Learning ISE424 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type N/A
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The objective of this course is to present the historical context, theoretical framework, and sample applications of distance education and e-learning. It also aims at providing hands-on experience with the design and development of a course module by using a learning management system. It also covers learning theories, instructional design, tools and technologies for distance education, research-based guidelines for multimedia learning, computer-mediated communication.
Course Learning Outcomes The students who succeeded in this course;
  • Describe the concepts and historical developments of distance education and e-learning
  • Apply a systematic approach for the design and development of a course
  • Design and develop a course module by using a learning management system such as Moodle
  • Select appropriate tools and technologies for distance education
  • Evaluate and apply research-based principles for e-learning
Course Content Definitions, history, and theories of distance education and e-learning, instructional design, tools and technologies for distance education, multimedia learning, computer-supported collaborative learning, learning management systems, new directions and developments.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Foundations of Distance Education Chapter 1 ( main text)
2 E-Learning: Promise and Pitfalls Chapter 1 (other sources 1)
3 Definitions, History, and Theories of Distance Education Chapter 2
4 How do People Learn Chapter 2 (other sources 1)
5 Instructional Design for Distance Education Chapter 5
6 Tools and Technologies for Distance Education Chapter 4
7 Computer-Supported Collaborative Learning Chapter 12 (other sources 1)
8 Learning Management Systems Chapter 9
9 Research-Based Principles for Multimedia Learning: Contiguity, Modality, Redundancy Effects Chapters 4-6 (other sources 1)
10 Research-Based Principles for Multimedia Learning: Coherence, Personalization, Segmenting, Worked-Examples Effects Chapters 7-10 (other sources 1)
11 Learning Objects Chapter 3 (other sources 3)
12 SCORM Chapter 13 (other sources 3)
13 E-learning 2.0 Chapter 12 (other sources 4)
14 Project Presentations
15 Final Examination Period Review of topics
16 Final Examination Period Review of topics

Sources

Course Book 1. Distance Education : A Systems View, by Michael G. Moore, Greg Kearsley. Wadsworth, 1996
Other Sources 2. e-Learning and the Science of Instruction: Proven Guidelines for Consumers and Designers of Multimedia Learning (2nd edition), by Ruth Colvin Clark, Richard E. Mayer. John Wiley & Sons, 2008.
3. Teaching and Learning at a Distance: Foundations of Distance Education (4th edition), by Michael Simonson, Sharon E. Smaldino, Michael Albright, Susan Zvacek. Pearson, 2006.
4. Reusing online resources: a sustainable approach to e-learning, Allison Littlejohn, Routledge, 2003.
5. Advances in E-Learning: Experiences and Methodologies, by Francisco J. Garcia Penalvo. Idea Group Inc, 2008.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 2 10
Presentation - -
Project 2 60
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 30
Final Exam/Final Jury - -
Toplam 5 100
Percentage of Semester Work 100
Percentage of Final Work 0
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Accumulated knowledge on mathematics, science and mechatronics engineering; an ability to apply the theoretical and applied knowledge of mathematics, science and mechatronics engineering to model and analyze mechatronics engineering problems.
2 An ability to differentiate, identify, formulate, and solve complex engineering problems; an ability to select and implement proper analysis, modeling and implementation techniques for the identified engineering problems.
3 An ability to design a complex system, product, component or process to meet the requirements under realistic constraints and conditions; an ability to apply contemporary design methodologies; an ability to implement effective engineering creativity techniques in mechatronics engineering. (Realistic constraints and conditions may include economics, environment, sustainability, producibility, ethics, human health, social and political problems.)
4 An ability to develop, select and use modern techniques, skills and tools for application of mechatronics engineering and robot technologies; an ability to use information and communications technologies effectively.
5 An ability to design experiments, perform experiments, collect and analyze data and assess the results for investigated problems on mechatronics engineering and robot technologies.
6 An ability to work effectively on single disciplinary and multi-disciplinary teams; an ability for individual work; ability to communicate and collaborate/cooperate effectively with other disciplines and scientific/engineering domains or working areas, ability to work with other disciplines.
7 An ability to express creative and original concepts and ideas effectively in Turkish and English language, oral and written, and technical drawings.
8 An ability to reach information on different subjects required by the wide spectrum of applications of mechatronics engineering, criticize, assess and improve the knowledge-base; consciousness on the necessity of improvement and sustainability as a result of life-long learning; monitoring the developments on science and technology; awareness on entrepreneurship, innovative and sustainable development and ability for continuous renovation.
9 Consciousness on professional and ethical responsibility, competency on improving professional consciousness and contributing to the improvement of profession itself.
10 A knowledge on the applications at business life such as project management, risk management and change management and competency on planning, managing and leadership activities on the development of capabilities of workers who are under his/her responsibility working around a project.
11 Knowledge about the global, societal and individual effects of mechatronics engineering applications on the human health, environment and security and cultural values and problems of the era; consciousness on these issues; awareness of legal results of engineering solutions.
12 Competency on defining, analyzing and surveying databases and other sources, proposing solutions based on research work and scientific results and communicate and publish numerical and conceptual solutions.
13 Consciousness on the environment and social responsibility, competencies on observation, improvement and modify and implementation of projects for the society and social relations and be an individual within the society in such a way that planing, improving or changing the norms with a criticism.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours)
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 3 48
Presentation/Seminar Prepration
Project 2 15 30
Report
Homework Assignments 2 5 10
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 15 15
Prepration of Final Exams/Final Jury
Total Workload 103