Heat Transfer (ENE301) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Heat Transfer ENE301 3 1 0 3 6
Pre-requisite Course(s)
ENE203
Course Language English
Course Type N/A
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Demonstration, Discussion, Question and Answer, Drill and Practice, Problem Solving.
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. Mehdi MEHRTASH
Course Assistants
Course Objectives •To introduce the basic principles of heat transfer •To present a wealth of real- world engineering examples to give students a feel for how heat transfer is applied in engineering practice •To develop an intuitive understanding of heat transfer by emphasizing the physics and physical arguments.
Course Learning Outcomes The students who succeeded in this course;
  • Understand the conduction mode of heat transfer mechanism
  • Understand the convection mode of heat transfer mechanism
  • Understand the radiation mode of heat transfer mechanism
  • Improve skills on how to approach and solve problems in mass and heat transfer related engineering problems
Course Content Basic concepts of heat transfer; mechanisms of heat transfer (conduction, convection, radiation).

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction and Basic Concepts Chapter 1
2 Heat Conduction Equation Chapter 2
3 Steady Heat Conduction Chapter 3
4 Transient Heat Conduction Chapter 4
5 Numerical Methods in Heat Conduction Chapter 5
6 Midterm Exam
7 Fundamentals of Convection Chapter 6
8 External Forced Convection Chapter 7
9 Internal Forced Convection Chapter 8
10 Natural Convection Chapter 9
11 Boiling and Condensation Chapter 10
12 Midterm Exam
13 Heat Exchangers Chapter 11
14 Fundamentals of Thermal Radiation Chapter 12
15 Radiation Heat Transfer Chapter 13
16 Final Exam

Sources

Course Book 1. Heat and Mass Transfer, Fundamentals and Applications. Yunus A. Çengel, Afshin J. Ghajar, Fifth Edition, Mc-Graw Hill (2015)
2. Incropera’s Principles of Heat and Mass Transfer. Theodore L. Bergman, Adrienne S. Lavine, Frank P. Incropera, David P. DeWitt, Global Edition, Wiley (2017)

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 5
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 15 15
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 60
Final Exam/Final Jury 1 40
Toplam 19 120
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Accumulated knowledge on mathematics, science and mechatronics engineering; an ability to apply the theoretical and applied knowledge of mathematics, science and mechatronics engineering to model and analyze mechatronics engineering problems.
2 An ability to differentiate, identify, formulate, and solve complex engineering problems; an ability to select and implement proper analysis, modeling and implementation techniques for the identified engineering problems.
3 An ability to design a complex system, product, component or process to meet the requirements under realistic constraints and conditions; an ability to apply contemporary design methodologies; an ability to implement effective engineering creativity techniques in mechatronics engineering. (Realistic constraints and conditions may include economics, environment, sustainability, producibility, ethics, human health, social and political problems.)
4 An ability to develop, select and use modern techniques, skills and tools for application of mechatronics engineering and robot technologies; an ability to use information and communications technologies effectively.
5 An ability to design experiments, perform experiments, collect and analyze data and assess the results for investigated problems on mechatronics engineering and robot technologies.
6 An ability to work effectively on single disciplinary and multi-disciplinary teams; an ability for individual work; ability to communicate and collaborate/cooperate effectively with other disciplines and scientific/engineering domains or working areas, ability to work with other disciplines.
7 An ability to express creative and original concepts and ideas effectively in Turkish and English language, oral and written, and technical drawings.
8 An ability to reach information on different subjects required by the wide spectrum of applications of mechatronics engineering, criticize, assess and improve the knowledge-base; consciousness on the necessity of improvement and sustainability as a result of life-long learning; monitoring the developments on science and technology; awareness on entrepreneurship, innovative and sustainable development and ability for continuous renovation.
9 Consciousness on professional and ethical responsibility, competency on improving professional consciousness and contributing to the improvement of profession itself.
10 A knowledge on the applications at business life such as project management, risk management and change management and competency on planning, managing and leadership activities on the development of capabilities of workers who are under his/her responsibility working around a project.
11 Knowledge about the global, societal and individual effects of mechatronics engineering applications on the human health, environment and security and cultural values and problems of the era; consciousness on these issues; awareness of legal results of engineering solutions.
12 Competency on defining, analyzing and surveying databases and other sources, proposing solutions based on research work and scientific results and communicate and publish numerical and conceptual solutions.
13 Consciousness on the environment and social responsibility, competencies on observation, improvement and modify and implementation of projects for the society and social relations and be an individual within the society in such a way that planing, improving or changing the norms with a criticism.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 12 2 24
Presentation/Seminar Prepration
Project
Report
Homework Assignments 15 2 30
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 15 30
Prepration of Final Exams/Final Jury 1 20 20
Total Workload 152