ECTS - Innovation and Entrepreneurship in IT

Innovation and Entrepreneurship in IT (ISE432) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Innovation and Entrepreneurship in IT ISE432 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type N/A
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives - Provide students with the basic knowledge on innovation and entrepreneurship in IT. - The course covers topics and tips on starting a techno-business, writing a business plan and managing innovation to sustain the growth of future business.
Course Learning Outcomes The students who succeeded in this course;
  • Describe the knowledge on innovation and innovation process.
  • Distinguish different types of innovation
  • Discuss sources and outcomes of innovation process
  • Explain the role of entrepreneurship in innovation
  • Write a complete business plan
  • Know how to launch a techno-business in IT
  • Be aware of the significance of innovation management and intellectual property rights
Course Content Introduction to entrepreneurship, recognizing opportunities and generating ideas, feasibility analysis, developing an effective business model, industry and competitor analysis, writing a business plan, preparing the proper ethical and legal foundation, assessing a new venture?s financial strength and viability, building a new-venture team, working with disciplinary teams, working with interdisciplinary teams, getting financing or funding.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to Innovation and Entrepreneurship Lecture notes
2 Innovation Lecture notes
3 Innovation sources Lecture notes
4 Innovation process Lecture notes
5 Requirement of Innovation Lecture Notes
6 Midterm Lecture notes
7 Innovation and Entrepreneurship Lecture notes
8 Techno- Entrepreneurship Lecture notes
9 Preparing business-plan Lecture notes
10 Preparing business-plan Lecture notes
11 Preparing business-plan Lecture notes
12 Starting a Techno-Business, Growing the business and innovation Lecture Notes
13 Opportunities and government incentives Lecture notes
14 Innovation management and sustainability Lecture notes
15 Final Examination Period Review of topics
16 Final Examination Period Review of topics

Sources

Course Book 1. Ders Notları
Other Sources 2. Innovation and Entrepreneurship, Drucker P. F., HarperBusiness, 2006.
3. The Sources of Innovation, von Hippel E., Oxford University Press, 1994.
4. Managing Research, Development and Innovation: Managing the Unmanageable (3rd ed.), Jain R., Triandis H. C., Weick C.W., Wiley, 2010.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project 1 40
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 30
Final Exam/Final Jury 1 35
Toplam 3 105
Percentage of Semester Work 65
Percentage of Final Work 35
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Accumulated knowledge on mathematics, science and mechatronics engineering; an ability to apply the theoretical and applied knowledge of mathematics, science and mechatronics engineering to model and analyze mechatronics engineering problems.
2 An ability to differentiate, identify, formulate, and solve complex engineering problems; an ability to select and implement proper analysis, modeling and implementation techniques for the identified engineering problems.
3 An ability to design a complex system, product, component or process to meet the requirements under realistic constraints and conditions; an ability to apply contemporary design methodologies; an ability to implement effective engineering creativity techniques in mechatronics engineering. (Realistic constraints and conditions may include economics, environment, sustainability, producibility, ethics, human health, social and political problems.)
4 An ability to develop, select and use modern techniques, skills and tools for application of mechatronics engineering and robot technologies; an ability to use information and communications technologies effectively.
5 An ability to design experiments, perform experiments, collect and analyze data and assess the results for investigated problems on mechatronics engineering and robot technologies.
6 An ability to work effectively on single disciplinary and multi-disciplinary teams; an ability for individual work; ability to communicate and collaborate/cooperate effectively with other disciplines and scientific/engineering domains or working areas, ability to work with other disciplines.
7 An ability to express creative and original concepts and ideas effectively in Turkish and English language, oral and written, and technical drawings.
8 An ability to reach information on different subjects required by the wide spectrum of applications of mechatronics engineering, criticize, assess and improve the knowledge-base; consciousness on the necessity of improvement and sustainability as a result of life-long learning; monitoring the developments on science and technology; awareness on entrepreneurship, innovative and sustainable development and ability for continuous renovation.
9 Consciousness on professional and ethical responsibility, competency on improving professional consciousness and contributing to the improvement of profession itself.
10 A knowledge on the applications at business life such as project management, risk management and change management and competency on planning, managing and leadership activities on the development of capabilities of workers who are under his/her responsibility working around a project.
11 Knowledge about the global, societal and individual effects of mechatronics engineering applications on the human health, environment and security and cultural values and problems of the era; consciousness on these issues; awareness of legal results of engineering solutions.
12 Competency on defining, analyzing and surveying databases and other sources, proposing solutions based on research work and scientific results and communicate and publish numerical and conceptual solutions.
13 Consciousness on the environment and social responsibility, competencies on observation, improvement and modify and implementation of projects for the society and social relations and be an individual within the society in such a way that planing, improving or changing the norms with a criticism.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours)
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 4 64
Presentation/Seminar Prepration
Project 1 20 20
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 10 10
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 104