Thermodynamics II (ENE204) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Thermodynamics II ENE204 4. Semester 3 0 0 3 5
Pre-requisite Course(s)
(ENE203 veya CEAC203 veya CEAC207)
Course Language English
Course Type Compulsory Departmental Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Demonstration, Discussion, Question and Answer, Drill and Practice.
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. Mehdi MEHRTASH
Course Assistants
Course Objectives Application of the laws of thermodynamics to the power and refrigeration cycles. Mass, energy, entropy and exergy analysis in reactive and nonreactive processes.
Course Learning Outcomes The students who succeeded in this course;
  • Understand and use the concept of exergy.
  • Learn and analyze gas and vapor power cycles, regeneration, cogeneration, combined and refrigeration cycles.
  • Determine the properties of gas mixtures and gas-vapor mixtures
  • Analyze the reacting and nonreacting systems in terms of change in energy and entropy and develop the chemical equilibrium criterion in these systems
Course Content Property relations for pure substances, ideal gases, mixture of ideal gases, and atmospheric air; steam power cycles, refrigeration cycles, spark-ignition and compression-ignition engines, and turbine cycles.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Exergy: A Measure of Work Potential Chapter 8
2 Exergy: A Measure of Work Potential Chapter 8
3 Gas Power Cycles Chapter 9
4 Gas Power Cycles Chapter 9
5 Vapor and Combined Power Cycles Chapter 10
6 Vapor and Combined Power Cycles Chapter 10
7 Vapor and Combined Power Cycles Chapter 10
8 Refrigeration Cycles Chapter 11
9 Midterm Exam
10 Gas Mixtures Chapter 13
11 Gas Vapor Mixtures and Air-Conditioning Chapter 14
12 Chemical Reactions Chapter 15
13 Chemical Reactions Chapter 15
14 Chemical and Phase Equilibrium Chapter 16
15 Chemical and Phase Equilibrium Chapter 16
16 Final Exam

Sources

Course Book 1. Thermodynamics: An Engineering Approach, Y.A. Çengel and M. A. Boles, 8th Ed., McGraw-Hill, 2015.
Other Sources 2. Fundamentals of Engineering Thermodynamics, C. Borgnakke and R.E.Sonntag, 8th Ed. SI Version, 2014.
3. Fundamentals of Engineering Thermodynamics, Michael J. Moran, Howard N. Shapiro, 5th Edition, John Wiley & Sons Inc., 2006

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 5
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 15 15
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 50
Final Exam/Final Jury 1 30
Toplam 19 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gains adequate knowledge in mathematics, science, and relevant engineering disciplines and acquires the ability to use theoretical and applied knowledge in these fields to solve complex engineering problems.
2 Gains the ability to identify, formulate, and solve complex engineering problems and the ability to select and apply appropriate analysis and modeling methods for this purpose. X
3 Gains the ability to design a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements and to apply modern design methods for this purpose.
4 Gains the ability to select and use modern techniques and tools necessary for the analysis and solution of complex engineering problems encountered in engineering applications and the ability to use information technologies effectively.
5 Gains the ability to design experiments, conduct experiments, collect data, analyze results, and interpret findings for investigating complex engineering problems or discipline specific research questions.
6 Gains the ability to work effectively in intra-disciplinary and multi-disciplinary teams and the ability to work individually.
7 a) Gains the ability to communicate effectively in written and oral form, b) Gains acquires proficiency in at least one foreign language, the ability to write effective reports and understand written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions.
8 Gains awareness of the need for lifelong learning and the ability to access information, follow developments in science and technology, and to continue to educate him/herself
9 a)Gains the ability to behave according to ethical principles, awareness of professional and ethical responsibility. b) Gains knowledge of the standards utilized in energy systems engineering applications.
10 Gains knowledge on business practices such as project management, risk management and change management; awareness about entrepreneurship, innovation; knowledge on sustainable development.
11 a) Gain awareness of the effects of Energy Systems Engineering applications on health, environment and safety in universal and societal dimensions. b) Gain knowledge of the problems of the era reflected in the field of engineering; gain awareness of the legal consequences of engineering solutions.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 15 2 30
Presentation/Seminar Prepration
Project
Report
Homework Assignments 5 4 20
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 8 16
Prepration of Final Exams/Final Jury 1 12 12
Total Workload 126