ECTS - Introduction to Electrical Engineering
Introduction to Electrical Engineering (EE234) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Introduction to Electrical Engineering | EE234 | 4. Semester | 3 | 1 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
PHYS102 |
Course Language | English |
---|---|
Course Type | Compulsory Departmental Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | |
Learning and Teaching Strategies | . |
Course Lecturer(s) |
|
Course Objectives | |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Definition of current, voltage, resistance, power, Kirchoff laws and resistive DC circuits, Thevenin and Norton equivalents, AC circuits, phasors, filters, reactive power, three-phase circuits and power, overview of combinational and sequential digital circuits and examples, diodes and transistors. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Basic concepts in electrical engineering | |
2 | Voltage-Current Relationships, Ohm’s Law, Power | Review last weeks topics |
3 | Fundamental network theorems and resistive circuits, Kirchhoff laws, Sign Conventions | Review last weeks topics |
4 | Parallel and Series Circuits and their resistive versions | Review last weeks topics |
5 | Nodal Analysis | Review last weeks topics |
6 | Mesh Analysis | Review last weeks topics |
7 | Midterm Exam | Review all topics up-to this week |
8 | Circuits with dependent sources | Review last weeks topics |
9 | Thevenin-Norton theorems | Review last weeks topics |
10 | Alternating Current Concepts, Charge and Magnetism | Review last weeks topics |
11 | Inductors and Capacitors | Review last weeks topics |
12 | Initial condition response of AC circuits | Review last weeks topics |
13 | Sinusoidal steady state analysis and impedance | Review last weeks topics |
14 | Application of fundamental concepts in circuit analysis to AC network solutions | Review last weeks topics |
15 | Power in AC circuits | Review last weeks topics |
16 | Midterm exam | Review all topics up-to this week |
Sources
Course Book | 1. Irwin and Nelms, Engineering Circuit Analysis, 11th Ed., Wiley |
---|
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | 5 | 3 |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | - | - |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 50 |
Final Exam/Final Jury | 1 | 35 |
Toplam | 8 | 88 |
Percentage of Semester Work | |
---|---|
Percentage of Final Work | 100 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Gains adequate knowledge in mathematics, science, and relevant engineering disciplines and acquires the ability to use theoretical and applied knowledge in these fields to solve complex engineering problems. | X | ||||
2 | Gains the ability to identify, formulate, and solve complex engineering problems and the ability to select and apply appropriate analysis and modeling methods for this purpose. | X | ||||
3 | Gains the ability to design a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements and to apply modern design methods for this purpose. | |||||
4 | Gains the ability to select and use modern techniques and tools necessary for the analysis and solution of complex engineering problems encountered in engineering applications and the ability to use information technologies effectively. | |||||
5 | Gains the ability to design experiments, conduct experiments, collect data, analyze results, and interpret findings for investigating complex engineering problems or discipline specific research questions. | |||||
6 | Gains the ability to work effectively in intra-disciplinary and multi-disciplinary teams and the ability to work individually. | |||||
7 | a) Gains the ability to communicate effectively in written and oral form, b) Gains acquires proficiency in at least one foreign language, the ability to write effective reports and understand written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions. | |||||
8 | Gains awareness of the need for lifelong learning and the ability to access information, follow developments in science and technology, and to continue to educate him/herself | |||||
9 | a)Gains the ability to behave according to ethical principles, awareness of professional and ethical responsibility. b) Gains knowledge of the standards utilized in energy systems engineering applications. | |||||
10 | Gains knowledge on business practices such as project management, risk management and change management; awareness about entrepreneurship, innovation; knowledge on sustainable development. | |||||
11 | a) Gain awareness of the effects of Energy Systems Engineering applications on health, environment and safety in universal and societal dimensions. b) Gain knowledge of the problems of the era reflected in the field of engineering; gain awareness of the legal consequences of engineering solutions. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | 5 | 2 | 10 |
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 14 | 2 | 28 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | |||
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 10 | 20 |
Prepration of Final Exams/Final Jury | 1 | 20 | 20 |
Total Workload | 126 |