ECTS - Optimization in Energy Systems

Optimization in Energy Systems (ENE422) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Optimization in Energy Systems ENE422 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Question and Answer, Drill and Practice, Team/Group, Brain Storming, Project Design/Management.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives This course is designed to introduce the basic concepts of optimization, optimization techniques and applications in energy systems engineering
Course Learning Outcomes The students who succeeded in this course;
  • Have a firm understanding of optimization concepts (problem formulation, mathematical modeling, search procedure, solution methods)
  • Be able to use MATLAB programming for the numerical solution to optimization problems.
  • Be aware of the optimization techniques and their application
  • Be able to apply optimization tools in the analysis of and the solution to problems related to energy systems engineering.
  • Gain an ability to identify, formulate, and solve energy systems engineering problems.
  • Be able to use the optimization tools in the design, analysis, control, and improvement of energy systems
Course Content Fundamentals of optimization, graphical optimization, linear and nonlinear programming, unconstrained and constrained optimization, global optimization, MATLAB applications, case studies in energy systems engineering.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to Optimization
2 Introduction to Optimization
3 Graphical Optimization
4 Linear Programming
5 Nonlinear Programming
6 Numerical Techniques
7 Unconstrained Optimization
8 Constrained Optimization
9 Midterm Exam
10 Global Optimization
11 Optimization Toolbox from MATLAB
12 Analysis of Optimization Problems in Energy Systems Engineering
13 Analysis of Optimization Problems in Energy Systems Engineering
14 Solution of Optimization Problems in Energy Systems Engineering
15 Solution of Optimization Problems in Energy Systems Engineering
16 Final Exam

Sources

Other Sources 1. EngineerinOptimization Methods and Applications, A. Ravindran, K.M. Ragsdell, G.V. Rektaitis, 2nd Edition, 2006, Wiley
2. Multidiscipline Design Optimization, G. N. Vanderplaats, VR&D, Inc., Monterey CA, 2007 0-944956-04-1
3. Energy Systems: Optimization, Modeling, Simulation, and Economic Aspects, Journal, Springer, ISSN: 1868-3967
4. Applied Optimization with MATLAB Programming, Wiley, by P. Venkataraman (2002).
5. Practical Optimization (Algorithms and Engineering Applications), (Springer) by Antoniou, Andreas and Lu, Wu-Sheng (2007).
6. Numerical Optimization (Springer) by Jorge Nocedal and Stephen Wright (2006).

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 10
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 6 20
Presentation - -
Project 1 30
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 40
Final Exam/Final Jury 1 30
Toplam 10 130
Percentage of Semester Work 70
Percentage of Final Work 30
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gains adequate knowledge in mathematics, science, and relevant engineering disciplines and acquires the ability to use theoretical and applied knowledge in these fields to solve complex engineering problems. X
2 Gains the ability to identify, formulate, and solve complex engineering problems and the ability to select and apply appropriate analysis and modeling methods for this purpose.
3 Gains the ability to design a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements and to apply modern design methods for this purpose.
4 Gains the ability to select and use modern techniques and tools necessary for the analysis and solution of complex engineering problems encountered in engineering applications and the ability to use information technologies effectively.
5 Gains the ability to design experiments, conduct experiments, collect data, analyze results, and interpret findings for investigating complex engineering problems or discipline specific research questions.
6 Gains the ability to work effectively in intra-disciplinary and multi-disciplinary teams and the ability to work individually. X
7 a) Gains the ability to communicate effectively in written and oral form, b) Gains acquires proficiency in at least one foreign language, the ability to write effective reports and understand written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions.
8 Gains awareness of the need for lifelong learning and the ability to access information, follow developments in science and technology, and to continue to educate him/herself
9 a)Gains the ability to behave according to ethical principles, awareness of professional and ethical responsibility. b) Gains knowledge of the standards utilized in energy systems engineering applications.
10 Gains knowledge on business practices such as project management, risk management and change management; awareness about entrepreneurship, innovation; knowledge on sustainable development.
11 a) Gain awareness of the effects of Energy Systems Engineering applications on health, environment and safety in universal and societal dimensions. b) Gain knowledge of the problems of the era reflected in the field of engineering; gain awareness of the legal consequences of engineering solutions.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 2 28
Presentation/Seminar Prepration
Project 1 20 20
Report
Homework Assignments 3 3 9
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 10 10
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 125