ECTS - Computational Methods of Mathematical Finance

Computational Methods of Mathematical Finance (MATH417) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Computational Methods of Mathematical Finance MATH417 Area Elective 2 0 2 3 6
Pre-requisite Course(s)
MATH316
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Question and Answer, Problem Solving.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The goal of the course is to introduce the students to numerical methods in finance and option theory.
Course Learning Outcomes The students who succeeded in this course;
  • learn the finite difference methods for valuation of European options
  • understand the numerical methods for American options
  • know the methods for random number generation
  • understand option pricing by Monte Carlo simulation
Course Content Introduction to MATLAB, finite difference formulae, the explicit and implicit finite difference methods, The Crank-Nicolson method, European option pricing by the heat equation, pricing by the Black-Scholes equation, pricing by an explicit, an implicit and Crank-Nicolson method, pricing American options, projected SOR and tree methods, pseudo-rando

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to MATLAB pp. 263-286
2 Finite difference formulae pp. 195-199
3 The explicit finite difference method pp. 203-214
4 The fully implicit method pp. 215-219
5 The Crank-Nicolson method pp. 220-225
6 European option pricing by the heat equation pp. 226-233
7 Problem solving and review
8 Midterm Exam
9 Pricing by the Black-Scholes equation pp. 234-244
10 Pricing American options, Projected SOR and tree methods pp. 245-262
11 Pseudo-Random numbers, Inverse transform method pp. 140-148
12 Acceptance-Rejection and Box-Muller methods, The polar method of Marsaglia pp. 149-155
13 Monte Carlo integration pp. 160-165
14 Option pricing by Monte Carlo simulation pp. 166-178
15 Problem solving and review
16 Final Exam

Sources

Course Book 1. An Introduction to Computational Finance, Ö. Uğur, Imperial College Press, 2009.
Other Sources 2. Options, Futures and Other Derivatives, J. Hull, Prentice Hall, 2006.
3. The Mathematics of Financial Derivatives: A student introduction, P. Wilmott,S. Howison and J. Dewynne, Cambridge University Press, 1995.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 5 20
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 35
Final Exam/Final Jury 1 45
Toplam 7 100
Percentage of Semester Work 55
Percentage of Final Work 45
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Acquires skills to use the advanced theoretical and applied knowledge obtained at the mathematics bachelors program to do further academic and scientific research in both mathematics-based graduate programs and public or private sectors. X
2 Transplants and applies the theoretical and applicable knowledge gained in their field to the secondary education by using suitable tools and devices. X
3 Acquires the skill of choosing, using and improving problem solving techniques which are needed for modeling and solving current problems in mathematics or related fields by using the obtained knowledge and skills. X
4 Acquires analytical thinking and uses time effectively in the process of deduction. X
5 Acquires basic software knowledge necessary to work in the computer science related fields and together with the skills to use information technologies effectively. X
6 Obtains the ability to collect data, to analyze, interpret and use statistical methods necessary in decision making processes. X
7 Acquires the level of knowledge to be able to work in the mathematics and related fields and keeps professional knowledge and skills up-to-date with awareness in the importance of lifelong learning. X
8 Takes responsibility in mathematics related areas and has the ability to work affectively either individually or as a member of a team. X
9 Has proficiency in English language and has the ability to communicate with colleagues and to follow the innovations in mathematics and related fields. X
10 Has the ability to communicate ideas with peers supported by qualitative and quantitative data. X
11 Has professional and ethical consciousness and responsibility which takes into account the universal and social dimensions in the process of data collection, interpretation, implementation and declaration of results in mathematics and its applications. X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 2 32
Laboratory 16 2 32
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 3 42
Presentation/Seminar Prepration
Project
Report
Homework Assignments 5 8 40
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 12 12
Prepration of Final Exams/Final Jury 1 20 20
Total Workload 178