ECTS - Dynamical Systems and Chaos

Dynamical Systems and Chaos (MATH467) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Dynamical Systems and Chaos MATH467 Area Elective 4 0 0 4 6
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Question and Answer.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The mathematical formulation of numerous physical problems results in differential equations which are actually nonlinear. This course is about dynamical aspects of nonlinear ordinary differential equations. It treates chiefly autonomous systems, emphasizing qualitative behavior of solution curves, and gives an introduction to the phase portrait analysis of such systems.
Course Learning Outcomes The students who succeeded in this course;
  • be able to learn the existence theorem and learn continuation of solution and dependence on initial value.
  • learn the linear systems, how to diagonal a matrix and how to use it.
  • learn how to obtain the exponentials of operators, solve Linear Systems in R^2 by using the Eigenvalues.
  • use Jordan forms, learn stability theory and learn application of these on nonhomogeneous linear Systems.
  • find the maximal interval of existence, learn the flow that a differential equation defines and learn the linearization.
  • classify the equilibrium points, stable and center manifold theory, stability and Liapunov functions
  • learn definitions and applications of limit sets, attractors, Hamiltonian systems, the Poincare-Bendixson theory and bifurcation theory.
Course Content One-dimensional dynamic systems, stability of equilibria, bifurcation, linear systems and their stability, two-dimensional dynamic systems, Liapunov?s direct method and method of linearization, 3-dimensional dynamic systems.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Linear Systems: Uncoupled Linear Systems, Diagonalization pp. 1-6
2 Exponentials of Operators, The Fundamental Theorem for Linear Systems, Linear Systems in R^2 pp. 6-20
3 Complex Eigenvalues, Multiple Eigenvalues pp. 20-32
4 Jordan Forms, Stability Theory, Nonhomogeneous Linear Systems pp. 32-64
5 Nonlinear Systems: Some Preliminary Concepts and Definitions, The Fundamental Existence-Uniqueness Theorem, Dependence on Initial Conditions and Parameters pp. 65-79
6 The Maximal Interval of Existence, The Flow Defined by a Differential Equation, Linearization pp. 79-105
7 Midterm
8 The Stable Manifold Theorem, Stability and Liapunov Functions pp. 105-119 and pp. 129-136
9 Saddles, Nodes, Foci and Centers, Nonhyperbolic Critical Points in R^2, Center Manifold Theory pp. 136-163
10 Nonlinear Systems: Global theory, dynamical systems and global eExistence theorems, limit sets and attractors pp. 181-202
11 Periodic Orbits, Limit Cycles, The Stable Manifold Theorem for Periodic Orbits pp. 202-211 and pp. 220-234
12 Hamiltonian Systems, The Poincare-Bendixson Theory in R^2, Bendixson's Criteria pp. 234-252 and pp. 264-267
13 Nonlinear Systems: Bifurcation Theory, Structural Stability pp. 315-334
14 Bifurcations at Nonhyperbolic Equilibrium Points pp. 334-343
15 Review
16 Final Exam

Sources

Course Book 1. L. Perko, Differential Equations and Dynamical Systems: 3rd Edition, Springer, New York, 2000.
Other Sources 2. F. Verhulst, Nonlinear Differential Equations and Dynamical Systems: 2nd Edition, Springer, New York, 1996.
3. M.W. Hirsch, S. Smale and R.L. Devaney, Differential Equations, Dynamical Systems and, An Introduction to Chaos: 2nd Edition, Academic Press, San Diego, 2004.
4. W. Kelley and A.Peterson, The Theory of Differential Equations: Classical and Qualitative, Pearson Education, New Jersey, 2004.
5. S.L.Ross, Differential Equations, 3rd edition, Wiley, New York, 1984

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 2 20
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 40
Final Exam/Final Jury 1 40
Toplam 4 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Acquires skills to use the advanced theoretical and applied knowledge obtained at the mathematics bachelors program to do further academic and scientific research in both mathematics-based graduate programs and public or private sectors. X
2 Transplants and applies the theoretical and applicable knowledge gained in their field to the secondary education by using suitable tools and devices. X
3 Acquires the skill of choosing, using and improving problem solving techniques which are needed for modeling and solving current problems in mathematics or related fields by using the obtained knowledge and skills. X
4 Acquires analytical thinking and uses time effectively in the process of deduction. X
5 Acquires basic software knowledge necessary to work in the computer science related fields and together with the skills to use information technologies effectively. X
6 Obtains the ability to collect data, to analyze, interpret and use statistical methods necessary in decision making processes. X
7 Acquires the level of knowledge to be able to work in the mathematics and related fields and keeps professional knowledge and skills up-to-date with awareness in the importance of lifelong learning. X
8 Takes responsibility in mathematics related areas and has the ability to work affectively either individually or as a member of a team. X
9 Has proficiency in English language and has the ability to communicate with colleagues and to follow the innovations in mathematics and related fields. X
10 Has the ability to communicate ideas with peers supported by qualitative and quantitative data. X
11 Has professional and ethical consciousness and responsibility which takes into account the universal and social dimensions in the process of data collection, interpretation, implementation and declaration of results in mathematics and its applications. X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours)
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 4 64
Presentation/Seminar Prepration
Project
Report
Homework Assignments 2 8 16
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 16 16
Prepration of Final Exams/Final Jury
Total Workload 96